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Preface 
Lie algebras are not only an interesting mathematical field but also efficient tools to 
analyze the properties of physical systems. Concrete applications comprise the 
formulation of symmetries of Hamiltonian systems, the description of atomic, 
molecular and nuclear spectra, the physics of elementary particles and many 
others. 

In particular, ( )su N Lie algebras very frequently appear and "there is hardly any 
student of physics or mathematics who will never come across symbols like (2)su  
and (3)su " (Fuchs, Schweigert, 1997, p. XV). For instance, the algebra (2)su  
describes angular momenta, (3)su  is related to harmonic oscillator properties 
(Talmi, 1993, p. 621) or to rotation properties of systems (Talmi, 1993, p. 797; 
Pfeifer, 1998, p.113) and (4)su  represents states of elementary particles in the 
quark model (Greiner, Müller, 1994, p. 367) 

This book is mainly directed to undergraduate students of physics or to interested 
physicists. It is conceived to give directly a concrete idea of the ( )su N  algebras 
and of their laws. The detailed developments, the numerous references to 
preceding places, the figures and many explicit calculations of matrices should 
enable the beginner to follow. Laws which are given without proof are marked 
clearly and mostly checked with numerical tests. Knowledge of linear algebra is a 
prerequisite. Many results are obtained, which hold generally for (simple) Lie 
algebras. Therefore the text on hand can make the lead-in to this field easier. 

The structure of the contents is simple. First, Lie algebras are defined and the 
( )su N  algebras are introduced starting from anti-Hermitian matrices. In chapter 3 

the (2)su  algebras, their multiplets and the direct product of the multiplets are 
investigated. The treatment of the (3)su  multiplets in chapter 4 is more labour-
intensive. Casimir operators and methods to determine the dimensions of 
multiplets are introduced. In chapter 5 the (4)su  multiplets are represented three-
dimensionally. Making use of the (4)su  algebra, the properties of the Cartan-Weyl 
basis are demonstrated. Chapter 6 points to general relations of the ( )su N  
algebras. 

Any reader who detects errors is urged to contact the author via the email address 
mailbox@walterpfeifer.ch. Of course, the author is willing to answer questions. 



 4

1  Lie algebras 
In this chapter the Lie algebra is defined and the properties of its underlying vector 
space are described. Discussing the role of the basis elements of the algebra one 
is led to the structure constants, to some of their symmetry properties and to their 
relationship to the adjoint matrices. With these matrices the Killing form is 
constructed. As a natural example for a Lie algebra, general square matrices are 
looked at. The notion of "simplicity" is introduced. 

Operators which constitute a Lie algebra act on vector spaces of functions. By 
means of the corresponding expansion coefficients, properties of these operators 
are shown. The matrices of the expansion coefficients make up a representation of 
the algebra. If this representation is reducible it can be transformed to the 
equivalent block diagonal form. The functions which are assigned to an irreducible 
representation form a multiplet. 

1.1  Definition 
What is a Lie algebra? 
A Lie algebra L  comprises the elements , , ,...a b c  , which may be general matrices 
with certain  properties (real/complex matrix elements, internal symmetries)  or 
linear operators etc. The elements can be combined in two different ways. To 
come first, the elements of a Lie algebra must be able to form Lie products [ ],a b , 
which are also named Lie brackets or commutators. For square matrices a  and b  
the well-known relation   

   ,a b ab ba⎡ ⎤ = −⎣ ⎦   (1.1.1) 

defines a commutator, which, of course, is again a matrix. On the other hand, if the 
elements of a Lie algebra are operators or more general quantities the commutator 
[ ],a b  has still to be defined, but the right hand side of (1.1.1) need not to be 
satisfied. We want that, in addition to the formation of the commutator, it must be 
possible to combine the elements of the Lie algebra linearly, i.e., they constitute a 
vector space.  

Thus, the definition of a Lie algebra L  demands the following properties of its 
elements , , ,...a b c  

a) the commutator of two elements is again an element of the algebra 

   [ ],a b ∈ L  for all a, b ∈ L , (1.1.2) 

b) a linear combination a bα β+  of the elements a  and b  with the real or complex 
numbers α and β  is again an element of the algebra i.e. 

    a bα β+ ∈ L ,    if a, b ∈ L . (1.1.3) 

Therefore the element 0 (zero) belongs to the algebra. 
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c) The following linearity is postulated 

   [ ] [ ] [ ], , ,a b c a c b cα β α β+ = +     for all , ,a b c ∈ L . (1.1.4) 

d) Interchanging both elements of a commutator results in the relation 

   [ ],a b [ ],b a= − . (1.1.5) 

With (1.1.5) and (1.1.4) one proves that also [ ] [ ] [ ], , ,a b c a b a cβ γ β γ+ = +  holds. 
Of course, we have [ ], 0c c = . 

e) Finally the Jacobi identity has to be satisfied as follows 

[ ] [ ] [ ], , , , , , 0a b c b c a c a b⎡ ⎤ + ⎡ ⎤ + ⎡ ⎤ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (1.1.6) 

Using (1.1.1) one shows that this identity holds for square matrices. 

Note that we don't demand that the commutators are associative i.e. the relation 
[ ] [ ], , , ,a b c a b c⎡ ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦  is not true in general. Some authors choose other logical 

sequences of postulates for the Lie algebra. For instance one can define [ ], 0c c =  
and deduce (1.1.5) (Carter, 1995, p. 5). 

f) In addition to a) up to e) we demand that a Lie algebra has a finite dimension n 
i.e. it comprises a set of n linearly independent elements 1 2, , ... , ne e e , which act as 
a basis, by which every element x of the algebra can be represented like this 

   
1

n

j j
j

x eξ
=

= ∑  . (1.1.7) 

In other words, the algebra constitutes an n–dimensional vector space. Sometimes 
the dimension is named order. If the coefficients jξ  in (1.1.7) and ,α β  in (1.1.3) 
are real the algebra is named real. In a complex or complexified algebra the 
coefficients are complex. 

We summarize points a) up to f): A Lie algebra is a vector space with an alternate 
product satisfying the Jacobi condition. 

In accordance with the definition point e) the basis elements ie  meet the Jacobi 
identity (1.1.6). If this is the case, the arbitrary elements 

  
1

n

j j
j

x eξ
=

= ∑ , n
i ii

y eη= ∑  and n
k kk

z eζ= ∑  (1.1.8) 

satisfy the identity as well. We introduce a symbol for the Jacobi form 

   { } [ ] [ ] [ ], , , , , , , ,a b c a b c b c a c a b≡ ⎡ ⎤ + ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (1.1.9) 

which is linear in a, b, c. Replacing these elements by x, y and z and inserting the 
expressions for x, y and z we obtain 
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   { } { }, , , ,n
j i k j i kjik

x y z e e eξ η ζ= ∑ . (1.1.10) 

Since every Jacobi form on the right hand side vanishes, it is proved that in order 
to have the identity (1.1.6), it suffices to ask that the condition is satisfied by the 
basis elements. 

Clearly the choice of the basis 1 2, , ... , ne e e  is arbitrary. With a nonsingular matrix 
r , which contains the real or complex numbers klr , a new basis 1 2, , ... , ne e e′ ′ ′  can be 
built this way 

   
1

n
k kl ll

e r e
=

′ = ∑ . (1.1.11) 

The new elements meet the Jacobi identity, which is shown in (1.1.10). It is a well-
known fact that the elements ke′  are linearly independent if  1 2, , ... , ne e e  do and if r  
is non-singular. Of course a change of the basis of a complex (or real) Lie algebra 
by means of complex (or real) coefficients klr  in (1.1.11) restores the algebra and it 
keeps its name. 

The structure constants 
Due to (1.1.2) the commutator of two basis elements belongs also to the algebra 
and, following (1.1.7) it can be written like this 

   [ ]
1

,
n

i k ikl l
l

e e C e
=

= ∑ . (1.1.12) 

The 3n  coefficients iklC are called structure constants, relative to the { }ie -basis. 
They are not invariant under a transformation as per (1.1.11) (see (1.1.17)). Given 
the set of basis elements, the structure constants specify the Lie algebra 
completely. Of course, a Lie algebra with complex structure constants is complex 
itself. Clearly, if the structure constants are real, a real Lie algebra can be 
constructed on its basis. 

The commutator of the elements x and y, (1.1.8), can be expressed by the basis 
elements as follows 

   [ ] ,
, ,n

i j i j i j ijk ki j ijk
x y e e C eξ η ξ η⎡ ⎤= =⎣ ⎦∑ ∑  (1.1.13) 

Analogously the structure constants of the new basis 1 2, , ... , ne e e′ ′ ′ , (1.1.11), are 
determined this way 

  [ ], ,i k ij kl j l ij kl jlm m
jl jlm

e e r r e e r r C e′ ′ ⎡ ⎤= =⎣ ⎦∑ ∑  . (1.1.14) 

Since r  is nonsingular,  the inverse matrix 1r −  exists and 

   ( )1
p m

p mp

r e e− ′ =∑  holds, (1.1.15) 
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which we insert in (1.1.14) like this 

   [ ] ( )1,i k ij kl jlm pmp
jlmp

e e r r C r e−′ ′ ′= ∑  . (1.1.16) 

 Thus, the structure constants of the new basis read 

     ( )1
ikp ij kl jlm mp

jlm

C r r C r −′ = ∑  . (1.1.17) 

We insert (1.1.12) in the Jacoby identity (1.1.6) and obtain 

   

[ ]

[ ] [ ]

0 , , , , , ,

, , ,

.

i j k j k i k i j

jkl i l kil j l ijl k l
l l l

jkl ilm m kil jlm m ijl klm m
lm lm lm

e e e e e e e e e

C e e C e e C e e

C C e C C e C C e

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤+ + =⎣ ⎦

+ +

∑ ∑ ∑

∑ ∑ ∑

 (1.1.18) 

Because the basis elements me  are linearly independent, we get n equations for 
given values i, j, k like this 

   0 ( )jkl ilm kil jlm ijl klm
l

C C C C C C= + +∑ ,    m = 1, ... , n. (1.1.19) 

We write the antisymmetry relation (1.1.5) of commutators as [ ] [ ], ,i k k ie e e e= −  

and insert equation (1.1.12), which yields ikl l kil ll l
C e C e= −∑ ∑ . Due to the linear 

independence of the basis elements we obtain n equations for given values i,k of 
the following form 

   ikl kilC C= −  . (1.1.20) 

In Section 2.3 we will see that in ( )su N -algebras the structure constants relative 

to the { }ie -basis are antisymmetric in all indices and not only in the first two ones 
like in (1.1.20). 

The adjoint matrices 
Here we introduce the adjoint or ad -matrices. As per (1.1.2) the commutator of 
an arbitrary element a  of a Lie algebra with basis elements ie  must be a linear 
combination of the basis elements similarly to (1.1.12). Therefore we write 

   [ ] ( )( )
1

, 1, 2, , .for
=

= =∑
n

k llk
l

a e ad a e k n    (1.1.21) 

The coefficients ( )( )lk
ad a  are elements of the n n× -matrix ( )ad a . It is easy to 

show that it is linear in the arguments like this: 
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   ( ) ( ) ( )ad a b ad a ad bα β α β+ = +  (1.1.22) 

and the following commutator relation holds: 

   ( ) ( ) ( ), ,ad a b ad a ad b⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦ . (1.1.23) 

replacing a  by ie in (1.1.21) yields 

[ ] ( )( )
1

,
n

i k i llk
l

e e ad e e
=

= ∑ .    (1.1.24) 

Comparing with (1.1.12) we obtain 

   ( )( )i ikllk
ad e C= . (1.1.25) 

We will come back to the adjoint matrices in Sections 1.4 and 3.1. 

These ad -matrices appear also in the so-called "Killing form", which plays an 
important part in the analysis of the structure of algebras. 

The Killing form 

The "Killing form" ( ),B a b  corresponding to any two elements a  and b  of a Lie 
algebra is defined by 

   ( ) ( ) ( )( ),B a b Tr ad a ad b= ⋅ .               (1.1.26)  

The symbol Tr  denotes the trace of the matrix product. It can be shown that the 
Killing form ( ),B a b  is symmetric and bilinear in the elements a  and b . We write 
the Killing form of the basis elements ie  and je  of a Lie algebra 

   ( ) ( ) ( )( ) ( )( ) ( )( ),i j i j i jlk kll k
B e e Tr ad e ad e ad e ad e⎛ ⎞= ⋅ = ⎜ ⎟

⎝ ⎠
∑ ∑ .    (1.1.27) 

With (1.1.25) we have 

   ( )
,

,i j ikl jlk
l k

B e e C C= ∑ .          (1.1.28) 

In Sections 2.3 and 3.1 we will deal with the Killing form of ( )su N  and ( )2su , 
respectively. 

Simplicity 
From the theoretical point of view it is important to know whether a Lie algebra is 
simple. We give the appropriate definitions concisely. 

A Lie algebra is said to be simple if it is not Abelian and does not possess a proper 
invariant Lie subalgebra. 

The terms used here are defined as follows: 
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      - A Lie algebra L  is said to be Abelian if [ ], 0a b =  for all ,a b ∈L . Thus, in an 
 Abelian Lie algebra all the structure constants are zero. 

      - A subalgebra L′  of a Lie algebra L  is a subset of elements of L  that 
 themselves form a Lie algebra with the same commutator and field as that 
 of L . This implies that L′  is real if L  is real and L′  is complex if L  is 
 complex. 

      - A subalgebra { }L 0′ ≠  is said to be proper if at least one element of L  is not 
 contained in L′ . 

      - A subalgebra L′  of a Lie algebra L  is said to be invariant if [ ] L,a b ′∈  for all 
 La ′∈  and Lb ∈ . An invariant subalgebra is also named ideal. 

We will meet simple Lie algebras in Sections 2.2 and 4.2. 

Example 
Obviously, square N-dimensional matrices (N N× -matrices, sometimes called 
matrices of rank N) constitute a Lie algebra. The commutators and linear 
combinations are again N-dimensional matrices and the conditions a) up to e) are 
satisfied. The basis matrices for matrices with complex matrix elements can be 
chosen like this, where i 1= − : 

1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1

, , .. , , , .. ,. . . .
. . . .

0 0 0 0 0 0 0 0
0 0 0
0 0

,.
.

0 1
i 0 0 0 i 0 0 0 0
0 0 0 0 i 0

, , .. ,. . .
. . .

0 0 0 0 0 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 0 0
0 i

, , .. ,.
.

0 0
0 0 0
0 0

..
.

0 i

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(1.1.29) 
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The set (1.1.29) can be written using the square matrices 
ij

E , which shows the 

value 1 at the position ( ),i j  and zeros elsewhere. The canonical basis 

{ } { }i
ij ij

E E⊕  forms the basis (1.1.29). 

Using these 22N  basis elements the definition point f) is met with real coefficients 
iξ  in (1.1.7). In a word, the complex matrices of order N  form a real vector space 

of dimension 22N . On the other hand, the same vector space of complex N N× -
matrices can be constructed using complex coefficients and the basis { }ij

E . The 

resulting complex algebra is named ( ),m N C  and it has the dimension 2N . In 

Section 2.2 we will interrelate it with ( )u N . 

1.2  Isomorphic Lie algebras 
A Lie algebra with elements , ...a b  is isomorphic to an other Lie algebra with 
elements , ...A B  if an unambiguous mapping ( ) ( ), , ...a A b Bφ φ= =  exists which is 

reversible, i.e. ( ) ( )1 1, , ...A a B bφ φ− −= =  . It has to meet the relations 

   
( ) ( ) ( )
[ ]( ) ( ) ( ), ,

a b a b

a b a b

φ α β αφ βφ

φ φ φ

+ = +

⎡ ⎤= ⎣ ⎦
 (1.2.1) 

for all scalars α  and β . 

The structure of both Lie algebras is identical and we expect that both have the 
same dimension n. Supposed 1 2, , .. , ne e e  are the basis elements of the first Lie 
algebra, then ( ) ( ) ( )1 2, , .. , ne e eφ φ φ  is a basis of the isomorphic Lie algebra. Of 
course, two isomorphic Lie algebras have the same structure constants. 

Here the Ado theorem is given without proof: 

Every abstract Lie algebra is isomorphic to a Lie algebra of matrices with the 
commutator defined as in equation (1.1.1). 

Consequently, the properties of Lie algebras can be studied by investigating the 
relatively vivid matrix algebras. 

1.3  Operators and Functions 
The general set-up 

In addition to the definition points a) up to f) of section 1.1 we demand that 
operators which form a Lie algebra act linearly on functions. These functions or 
states or "kets" make up a d-dimensional vector space with linearly independent 
basis functions 1 2, , .. , dψ ψ ψ  or 1 , 2 , .. , d . That is, an arbitrary function ψ  of this 
space can be written as 
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1

d

k k
k

cψ ψ
=

= ∑  (1.3.1) 

with real or complex coefficients kc  . 

We demand that the operators of the Lie algebra acting on a function produce a 
transformation of the function so that the result lies still in the original vector space. 
If we let act the element x of the Lie algebra on the basis function kψ , it yields the 
following linear combination of basis functions 

 ( )
1

d

k l
l lk

ψ ψΓ
=

= ∑x x  . (1.3.2) 

Notice the sequence of the indices in Γ . Making use of (1.3.1) we can write down 
the action of  x  on an arbitrary function ψ  like this 

   ( )
, 1

d

k llk
k l

cψ ψΓ
=

= ∑x x  , (1.3.3) 

which is a consequence of the linearity of x. In section 1.4 we will see that ( )lk
Γ x  

is linear in x, i.e. ( ) ( )
1 1

n n

i i i ilk lk
i ilk

Γ ξ ξΓ Γ
= =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ ∑x e e . Therefore equation (1.3.3) 

results in 

   ( )
1 1 1

n n d

i i i k i llk
i i k ,l

cψ ξ ψ ξ Γ ψ
= = =

= =∑ ∑ ∑x e e  . (1.3.4) 

We see that the action of the operators constituting a Lie algebra on the functions 
is mainly described by the coefficients ( )i lk

Γ e . 

 

Furthermore we demand that the vector space of the functions is an inner product 
space. That is to say, for every pair of functions ψ  and ϕ  an inner product ψ ϕ  
is defined with the following well-known properties 

i. *ψ ϕ ϕ ψ=  (complex conjugate) 

ii. ψ ϕ ϕ ψ ϕ ψ ϕ′ ′+ = +  

iii. c cψ ϕ ψ ϕ=     (c: complex or real number) 

iv. 0ψ ψ ≥   

v. 0ψ ψ = , if and only if ψ  = 0.  

Note that we obtain *c cψ ϕ ψ ϕ=  from i and iii. The state ψ  is named 

adjoint of ψ  . 

In an inner product vector space with linearly independent basis functions 
1 2, , ... , dψ ψ ψ  it is always possible to construct an orthogonal basis  0 0 0

1 2, , ... , dψ ψ ψ  
, which satisfies 
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   0 0
i k ikψ ψ δ=    i, k = 1, 2, ... ,d. (1.3.5) 

In the following, we will presuppose that the basis functions are orthonormalized, 
which is not a restriction. Assuming this property we form the inner product of both 
sides of eq. (1.3.2) with the basis function mψ  

   ( ) ( ) ( )
1 1

d d

m k m l ml mk
l llk lk

ψ ψ ψ ψ δΓ Γ Γ
= =

= = =∑ ∑x x x x  . (1.3.6) 

In section 1.4 we will refer to the quadratic matrix ( )Γ x , which contains the matrix 

elements ( )mk
Γ x . 

Further properties 

We look into further properties of the operators constituting a Lie algebra and of 
the affiliated basic functions. In analogy to (1.3.6) we make up the inner product of 
both sides of eq. (1.3.1) with the basis function mψ  as follows 

   
1

d

m k m k m
k

c cψ ψ ψ ψ
=

= =∑  , (1.3.7) 

which we insert again in eq. (1.3.1) like this 

   
1

d

j j
j

ψ ψ ψ ψ
=

= ∑  . (1.3.8) 

The functions ψ  and jψ  are ket states and can be marked by the ket symbol this 
way 

   
1

d

j j
j

ψ ψ ψ ψ
=

= ∑  . (1.3.9) 

Formally we can regard the expression 
1

d

j j
j

ψ ψ
=

∑  as an operator which restores 

the state ψ  like the identity operator 1 . That is the completeness relation 

   
1

d

j j
j

ψ ψ
=

=∑ 1 . (1.3.10) 

We apply it in order to formulate a matrix element of a sequence of two 
operators, say x and y,  like this 

   
1

d

i k i k i j j k
j

ψ ψ ψ ψ ψ ψ ψ ψ
=

= = ∑xy x y x y1 . (1.3.11) 

Making use of (1.3.6) we have the result 

   ( ) ( ) ( ) ( ) ( ) ( )
1

or
d

ik ij jk
j

Γ Γ Γ Γ Γ Γ
=

= =∑xy x y xy x y  (1.3.12) 
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I.e., the matrices Γ  multiply in analogy with the corresponding operators. 

Now, we investigate the matrix ( )Γ x  containing the matrix elements          

( ) i kik
Γ ψ ψ=x x , the adjoint of this matrix and adjoint operators. By definition, 

the adjoint matrix of ( )Γ x ,  ( )†Γ x , is transposed and conjugate complex, i.e.,  

   ( )† *i kik
ψ ψΓ =x x . (1.3.13) 

condition i of the inner product definition yields 

   ( )†x xik i kψ ψΓ = . (1.3.14) 

We define the adjoint operator †x  by 

   ( )† †
i k i kik

ψ ψ ψ ψΓ = =x x x . (1.3.15) 

Using this relation we write the matrix element of a sequence of two operators this 
way † † †

i k i k i kψ ψ ψ ψ ψ ψ= =xy y x y x  or ( )†
i k i kψ ψ ψ ψ=xy xy . Thus 

we have found 

   ( )† † †=xy y x  (1.3.16) 

in accordance with the matrix relation (2.2.3). 

1.4  Representation of a Lie algebra 
Definition 

Suppose that ,x y  and x yξ η+  are elements of a Lie algebra L  and that to every 
x ∈L  there exists a d d× -matrix ( )R x  such that  

   ( ) ( ) ( )R x y R x R yξ η ξ η+ = +  and  (1.4.1) 

   [ ]( ) ( ) ( ), ,R x y R x R y⎡ ⎤= ⎣ ⎦ . (1.4.2)  

Then these matrices are said to form a d -dimensional representation of L . 

Clearly, the set of matrices ( )R x  forms a Lie algebra over the same field (with real 
or complex coefficients ,ξ η ) as L . 

In (1.1.21) the adjoint or ad  matrices were introduced. Starting from (1.1.22) and 
(1.1.23) for simple Lie algebras it can be proved that the matrices 

( ) ( ){ }, ,ad x ad y  constitute a representation of the algebra { }, ,x y . This is the 
regular or adjoint representation. 
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We come back to the elements ( )lk
Γ x , (1.3.2) and (1.3.8), which make up the 

matrix ( )Γ x . We now maintain that the matrices ( )Γ x , ( )Γ y , ... constitute a 
representation of the Lie algebra ,x y , ... . As in section 1.3 we presuppose that 
the set of basis functions 1 2, , .. , dψ ψ ψ  is associated to the Lie algebra and the 

relation (1.3.2) holds as ( )
1

d

k l
l lk

ψ ψΓ
=

= ∑x x  with ( ) l klk
ψ ψΓ =x x  , see (1.3.6). 

According to (1.3..5) the states 1 2, , .. , dψ ψ ψ  can be regarded as orthonormalized, 
i.e. l m lmψ ψ δ=  . 

We prove our assertion. First we deal with the linearity property of the matrices Γ . 
For the moment we handle with the matrix element (lk): 

   ( ) ( ) ( )( ) .l k lk lklk
ψ ξ η ψ ξ ηΓ ξ η Γ Γ= + = ++ x y x yx y  (1.4.3) 

Of course, the same relation holds for the whole matrices: 

   ( ) ( ) ( )ξ η ξ ηΓ Γ Γ+ = +x y x y . (1.4.4) 

Next we treat the commutator relation, which will be similar to (1.4.2). For the 
commutator [ ]x,y  we don't take the abstract form (1.1.2) but we choose 

   [ ] = −x,y xy yx . (1.4.5) 

Following (1.4.4) we write  

   [ ]( ) ( ) ( ) ( ),Γ Γ Γ Γ= − = −x y xy yx xy yx  . (1.4.6)  

With eq. (1.3.12) we obtain 

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ),Γ Γ Γ Γ Γ Γ Γ= ⎡ ⎤− = ⎣ ⎦x,y x y y x x y . (1.4.7) 

Therefore, the equations (1.4.4) and (1.4.7) show that the ( ) ( ), , ...Γ Γx y  

represent the Lie algebra { }, , ...x y  . 

1.5  Reducible and irreducible representations, 
multiplets. 
Let's suppose that the vector space of functions of a Lie algebra is the direct sum 
of two subspaces A  and B , i.e. that the basis functions are split into two sets 

1 2, , .. , a Aψ ψ ψ ∈  and 1 2, , .. ,( )a a a b d Bψ ψ ψ ψ+ + + = ∈ . Furthermore, we assume that the 
subspaces are invariant, i.e., for every operator x  of the Lie algebra the relation 
(1.3.2) is modified like this 

   
( ) k

1
, if and

if

d

k l llk
l

l k

A A

B B

ψ ψ ψ ψ

ψ ψ

Γ
=

= ∈ ∈

∈ ∈

∑x x
 (1.5.1) 
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That is, the transformation of the functions takes place only in the vector subspace 
of the original basis function. This means that  

   
if 1 then 1 or
if 1 then 1 .

k a l a
a k a b d a l a b d

≤ ≤ ≤ ≤
+ ≤ ≤ + = + ≤ ≤ + =

 (1.5.2) 

Consequently only those coefficients ( )x
lk

Γ  are non-zero which meet the 

conditions (1.5.2). Therefore the matrix ( )Γ x  has the following form 

   ( )

111

1

1, 1 1,

. 1 ,

. 0 0 . 0

. . . .
. 0

0 .
0 . .
. .
0 . 0

a

a aa

a a a d

d a d d

Γ Γ

Γ Γ

Γ Γ

Γ Γ
Γ

+ + +

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x  (1.5.3) 

If in a Lie algebra all matrices ( )Γ x  are divided in this way in two or more 
squares along the diagonal, the representation is named reducible. some authors 
call it "completely reducible". 

On the other hand, if the operators constituting the algebra transform every 
function among functions of the entire vector space, there is no nontrivial invariant 
subspace (as defined at the beginning of this section). In this case, the matrices 

( )xΓ  cannot be decomposed in two or more square matrices along the diagonal, 
and the representation is named irreducible. The vector space of the functions of 
such a representation is called a multiplet. For particle physics, multiplets are very 
important. 

We go back to the representation (1.5.3). The squares in the matrix are irreducible 
representations, i.e. the reducible representation is decomposed into the direct 
sum of irreducible representations. 

If we interchange the basis functions or if we transform the basis more generally, it 
happens that we lose the structure of (1.5.3) i.e. the non-zero matrix elements can 
be spread over the entire matrix and the representation seems not to be reducible. 
However, one can reduce such a representation to the form (1.5.3) by a similarity 
transformation, where every matrix of the representation is transformed in the 
same way as set out below. H. Weyl proved that every finite dimensional 
representation of a semi-simple algebra decomposes into the direct sum of 
irreducible representations. Since the algebras ( )su N  are simple, this theorem 
holds also for them. 

 We investigate the transformations of representations. If S  is a non-singular 
d d× matrix, starting from a representation of the Lie algebra with the d-
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dimensional matrices ( )Γ x , we are able to construct a new representation 
constituted by the elements 

   ( ) ( )1 SSΓ Γ−′ =x x  . (1.5.4) 

The matrix S  is independent of x . 

First, we have to show that the matrices    ( )Γ ′ x  meet the linearity relation 
(1.4.4), namely 

( ) ( ) ( ) ( )
( ) ( )

1 1 1

, .

S S SS S S

QED

ξ η ξ η ξ η

ξ

Γ Γ Γ Γ

Γ ηΓ

− − −+ + = +

=

′ =

′ ′+

x y x y x y

x y
  (1.5.5) 

Then, the commutator relation is treated like this 

      

[ ]( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 11 1

, .

S S

S S S S S S

S S

S S

Γ Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ

− −

− −− −

− =

= − =

=

′ =

′ ′ ′ ′ ′ ′⎡ ⎤− = ⎣ ⎦

x x

x x

x,y y y

y y

x y y x x y

 (1.5.6) 

Consequently the set of matrices ( )Γ ′ x  also forms a d-dimensional 

representation. { }Γ  and { }Γ ′  are said to be equivalent representations. 

A given representation { }Γ  is reducible, if one can find the matrix S  in (1.5.4) so 

that all representation matrices ( )Γ ′ x  of the equivalent representation have the 
same block-diagonal form (1.5.3) with two or more squares. If the matrices of the 

basis elements, ( ) ( ) ( )1 2, , .. , nΓ Γ Γ′ ′ ′e e e  have obtained this form, obviously 
every matrix of the equivalent representation shows the same form (Note: the 
commutator of two matrices with the same block diagram structure generates a 
matrix which has the same structure). 

Assume that the basis functions 1 2, , .. , dψ ψ ψ  are assigned to the representation 

( ){ }Γ x . What can be said about the basis functions 1 2, , .. , dψ ψ ψ′ ′ ′  which belong 

to the equivalent representation ( ){ }'Γ x  We claim that the basis functions 

   
1

d

n mn m
m

Sψ ψ
=

′ = ∑           (with S  from (1.5.4)) (1.5.7) 

meet the relation 
1

d

n mn m
m

Sψ ψ
=

′ = ∑x x . We let the linear operator x  act on equation 

(1.5.7). Making use of (1.3.2) we get 



 17

    ( )
1 , 1

d d

n mn m mn ppm
m m p

S Sψ ψ ψΓ
= =

′ = =∑ ∑x x x .  

Because S  is non-singular the equation (1.5.7) can be inverted like this    

( )1

1

d

p qqp
q

Sψ ψ−

=

′= ∑ , which we insert using (1.5.4) like this 

   
( ) ( ) ( ) ( )

( )( ) ( )

1 1

, , 1 , , 1

1 , QED.

d d

n mn q mn qpm pmqp qp
m p q m p q

d d

q qqnqnq q

S S S S

S S

ψ ψ ψ

ψ ψ

Γ Γ

Γ Γ

− −

= =

−

′ ′ ′= = =

′ ′= ′

∑ ∑

∑ ∑

x x x

x x
 (1.5.8) 

If the matrices ( )Γ ′ x   of the equivalent representation have the form (1.5.3) with 

two or more squares on the diagonal, the vector space of the functions 1 2, , .. , dψ ψ ψ′ ′ ′  
is divided in invariant subspaces. Due to (1.5.8) the operator x  (and all the 
operators of the Lie algebra) transform the states of a subspace among 
themselves as described in the example at the beginning of this section. The 
structure of the basis functions is given in (1.5.7).  
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2  The Lie algebras su(N) 
Square Hermitian matrices and their basis elements are displayed. The traceless 
version is formed. Square anti-Hermitian matrices are shown to constitute a Lie 
algebra ( )u N . The traceless version is ( )su N . The Lie group ( )SU N  is 

introduced and its correspondence to ( )su N  is described. The total antisymmetry 

of the structure constants of  ( )su N  is shown. Now the Killing form can be given in 
more detail. 

2.1  Hermitian matrices 
Before we deal with su(N)-algebras we look at Hermitian matrices λ  of the 
dimension N (N N×  matrices). Hermiticity means that the adjoint of the matrix λ  
i.e. the conjugate complex and additionally transposed (reflected on the diagonal) 
matrix †λ is identical with λ , that is 

   †λ λ= . (2.1.1) 

This equation results in the following condition for matrix elements 

   *ik kiλ λ= . (2.1.2) 

If we have, for instance, 32 ir sλ = +  (r, s real, i 1= − ) and if all other matrix 
elements vanish apart from λ23, the matrix reads 

   

0 0 0 0 0 0 0 0 0 0 0 0
0 0 i 0 0 1 0 0 -i
0 i 0 0 1 0 0 i 0

. . .
0 0 0 0 0 0

r s
r sr s

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ++
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (2.1.3) 

We observe that every matrix of the type (2.1.1) can be constructed linearly by the 
following basis elements 

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0

, , .. , ,. . .
. . .

0 0 0 0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.1.4) 
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0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0

, , .. , ,. 1 0 .
. . 0 1

0 0 0 0 0 1 0
0 i 0 0 0 i 0 0 0 0
i 0 0 0 0 0

, , .. , ,. i 0 .
. . 0 -i

0 0 0 0 0 i 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.1.5) 

if we admit only real coefficients in the construction. Obviously the matrices (2.1.5) 
have vanishing traces (sums of the diagonal elements). If one replaces the 
matrices (2.1.4) by 

1 0 0 0 0 0 0 0
0 1 0 1 .

, , .. , ,0 1 0
. . 1

0 0 0 0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.1.6) 

one obtains a complete set of Hermitian basis matrices with vanishing traces. It is 
easy to show that an arbitrary diagonal and Hermitian matrix with vanishing trace 
can be constructed by a real linear combination of the matrices (2.1.6). In the 
literature, instead of the set (2.1.6), a set with the same number of linearly 
independent linear combinations of these matrices are used (see section 2.3, 
(4.1.2), (5.1.3)). Simple counting reveals that there are 2N  matrices in (2.1.4) and 
(2.1.5). Replacing (2.1.4) by (2.1.6) reduces the number by 1 so that we obtain 

2 1N − . We will see that this number coincides with the so-called dimension of the 
su(N)-algebra. 

2.2  Definition 
We maintain that square anti-Hermitian matrices of dimension N form a Lie 
algebra. A matrix a is anti-Hermitian if its adjoint equals to  a−  that is 

   †a a= − . (2.2.1) 

Taking real coefficients α  and β , for two anti-Hermitian matrices  a  and b  with 
the same dimension of course the following linear relation holds 

   ( )† ††( )a b a b a b a bα β α β α β α β+ = + = − − = − + . (2.2.2) 

Thus, linear combinations with real coefficients of anti-Hermitian matrices are also 
anti-Hermitian. In order to investigate the commutator we make use of the well-
known relation 
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   ( )† † †ab b a=  and write (2.2.3) 

   ( ) ( )† † † † † † †, ,a b ab ba b a a b ba ab a b= − = − = − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (2.2.4) 

Obviously the commutator of two anti-Hermitian matrices is also anti-Hermitian. 

Confirming our assertion, these results show that anti-Hermitian N N×  matrices 
constitute a real Lie algebra (with real coefficients). It is named u(N)-algebra 
because it is closely related to the Lie group of the unitary matrices. On the one 
hand, it constitutes a vector space over the field of real numbers and on the other 
hand, the matrices of the real matrix algebra ( )u N  contain complex elements.  

We go into the elements of the matrix algebra ( )u N . We substitute the general  
anti-Hermitian matrix a by 

   1 i
2

a h= −  (2.2.5) 

and form the adjoint equation †† 1 i
2

a h= . Inserting both expressions in (2.2.1) we 

obtain 

   †1 i
2

h  1 i
2

h=  (2.2.6) 

i.e. the matrix h  is Hermitian. As mentioned, the matrices (2.1.4) and (2.1.5), 

which we now name ( )21, ,
i

i Nλ = , are a basis for Hermitian matrices. 

Therefore, the elements 1 i
2 i

λ⎧ ⎫−⎨ ⎬
⎩ ⎭

 are a basis for the vector space of anti-

Hermitian matrices, i.e. for ( )u N . (by the way, note that the commutator of 
Hermitian matrices is not Hermitian but anti-Hermitian, which can be proven in 
analogy to (2.2.4)). 

Here we look into the direct sum of the real vector spaces ( )u N  (set up by anti-

Hermitian matrices) and ( )iu N  (Hermitian matrices). It comprises the basis 

elements 1 i
2 i

λ−  and 1 1i i
2 2i i

λ λ− =  with 
i

λ 's from (2.1.4) and (2.1.5). Pairs of these 

elements form the 22N  basis elements of (1.1.29). As explained there, their real 
vector space coincides with the vector space of ( ),m N C . thus we can write 

   ( ) ( ) ( ), im N u N u N= ⊕C  (2.2.7) 

The symbol ⊕  denotes the direct sum. The vector spaces ( )u N  and ( )iu N  are 

isomorphic and each has the dimension 2N . The vector space ( ) ( )iu N u N⊕  can 

also be obtained starting with ( )u N  by replacing its field of the real numbers by 
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the field of the complex numbers. This procedure is named complexification of the 
real algebra ( )u N . A real Lie algebra can be complexified in case its basis 
elements stay linearly independent when the field of numbers is replaced by a 
complex one. It can be shown that the Lie algebras ( )u N  and  ( )su N  satisfy this 
condition.  

Now we restrict ourselves to anti-Hermitian N N× -matrices , , ...s sa b  with 
vanishing traces. Of course, linear combinations of such matrices have also 
vanishing traces. Generally the trace of the commutator of matrices vanishes 
because of the matrix relation ( ) ( )Tr ab Tr ba= .  Analogously to (2.2.5) we write 

1 i
2s sa h= −  defining the corresponding Hermitian matrix sh , which has also a 

vanishing trace: 

   ( ) 0sTr h = . (2.2.8) 

Every anti-Hermitian matrix with vanishing trace can be formed as a linear 
combination with real coefficients of the matrices 

   1 i
2i i

e λ= −  (2.2.9) 

where 
i

λ  are basis matrices given in (2.1.6) and (2.1.5).  Therefore we have found 
that the basis elements 

i
e , (2.2.9), constitute a real Lie algebra. It represents a 

special kind of the u(N) algebra and is named su(N). It is a subalgebra of the real 
Lie algebra u(N) and has 2 1N −  basis matrices (see section 2.1). According to f) in 
subsection 1.1.1, it possesses therefore the 

   dimension 2 1n N= −  (2.2.10) 

(not to confound with the matrix dimension N). Sometimes the Hermitian 
matrices 

i
λ , which are given in (2.1.6) and (2.1.5), are named generators of the 

algebra su(N). Note that they don't form a real Lie algebra (the 
i

e 's do!). 

It can be shown that the Lie algebras ( )su N  are simple (see subsection 1.1.5 and 

section 1.5). In section 4.2 we will check this property for ( )3su . 

Here we mention the relation between the Lie algebra ( )su N  and the compact 
Lie group ( )SU N . By definition, the group  ( )SU N  is constituted by unitary, N-

dimensional matrices ( )† 1A A A−=  with determinants det 1A = . The product AB  

of arbitrary members A  and B  meets 

   
( ) ( )

( )

† 1† † 1 1 and

det det det 1,

AB B A B A AB

AB A B

−− −= = =

= ⋅ =
 (2.2.11) 
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where well-known matrix relations have been applied. We see that the product is 
also unitary, has determinant 1 and is therefore a member of the group. For every  
A  exists the inverse element 1A− . The product 1 1

N
AA E− = =  yields the identity 

element E , which meets EA AE A= = . These facts ensure that the elements 

, ,A B  form a group. This group ( )SU N  fulfills more sophisticated criteria not 

explained here which identify it to be a linear and compact Lie group. 

It can be shown that the matrix elements of the N N× -matrices A  of ( )SU N  are 

analytic functions of n  real parameters 1 2, , , nx x x  with 2 1n N= − ,as we will 
display for ( )2SU  in section 3.1. The number n  is the dimension of the group. 
The analytic dependence permits to differentiate the matrix elements 

( )1 2, , ,ik nA x x x  of the group element ( )1 2, , , nA x x x  of ( )SU N  with respect to lx ;  

i.e., the function ( )1 2, , ,ik n
l

A x x x
x
∂

∂
 exists for every set of parameters 

{ }1 2, , , nx x x . 

Without proof, we state the following remarkable relation between the group 
( )SU N  and the algebra ( )su N : 

   ( ) ( ) ( )
1 2

1 2 0
, , , , 1,2, , ; 1,2, ,

n
ik n lx x x ik

l

A x x x e i k N l n
x = = = =

∂
= = =

∂
, (2.2.12) 

where ( )l i k
e  is a matrix element of the basis element 

l
e  of the real Lie algebra  

( )su N . In summary one says: the linear Lie group ( )SU N  "corresponds" to the 

real Lie algebra  ( )su N . This relation holds generally: for every linear Lie group 
exists a corresponding real Lie algebra. In section 3.1 we will check this theorem 
for  ( )2SU  and ( )2su . 

The Lie algebra su(N) can also be constituted by operators. Their basis 
elements je  correspond one-to-one to the basis matrices 

j
e  (see 2.2.9). We 

define the operators je  by the equation 

   ( )
1

N

j k j l
l lk

eψ ψ
=

= ∑e . (2.2.13) 

That is, we attribute a multiplet of N functions - the so-called fundamental multiplet 
-  to the su(N)-algebra and demand that the action of je  on a function kψ  

generates the linear combination (2.2.13). The quantity ( )j lk
e  is a matrix element 

of 
j

e . The relation (2.2.13) correspond to (1.3.2) and consequently 

   ( )i j k j ik
eψ ψ =e  (2.2.14) 

holds in analogy to (1.3.6). Due to (2.2.1) the basis matrices 
j

e  are anti-Hermitian: 
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( ) ( )† †, i.e. j jj j ikik
e e e e= − = − . Following (2.2.14) and (1.3.15) we have 

†
i j k i j kψ ψ ψ ψ= −e e , which yields 

 †
j j= −e e  , (2.2.15) 

i.e. the basis operators are also anti-Hermitian. Corresponding to (2.2.9) we define 
the operators iλ  by 

   1 i
2

e j jλ= − . (2.2.16) 

The fundamental multiplet satisfies 

 iψ jλ  ( )k j ik
ψ λ=  and (2.2.17) 

   †
j j=λ λ  holds. (2.2.18) 

An analogous consideration reveals that basis matrices ( )jΓ e  (see (1.3.2)) which 
correspond to any function set of su(N) are anti-Hermitian.  

2.3  Structure constants of su(N) 
Due to (1.1.12) we can write 

   
1

,
n

ikli k l
l

e e C e
=

⎡ ⎤ =⎣ ⎦ ∑  (2.3.1)  

which results in 
1

, 2i
n

ikli k l
l

Cλ λ λ
=

⎡ ⎤ =⎣ ⎦ ∑   (2.3.2) 

by means of (2.2.9). The scalar Cikl is a structure constant of the real Lie algebra 
su(N) with basis elements 

l
e  (not 

l
λ ) and n is the dimension of the algebra. 

Because the algebra ( )su N  is real, the structure constants are real (otherwise the 
right hand side of (2.3.1) would not be purely anti-Hermitian). In order to display 
further properties of Cikl we look at the trace of products of matrices 

i
λ . For 

Hermitian basis matrices in (2.1.5), say 
i

λ and 
k

λ , the following relation holds 

   ( ) 2 iki k
Tr λ λ δ=  , (2.3.3) 

which can be seen directly by treating products numerically. For the diagonal 
matrices in (2.1.6) this relation is only true for su(2) but for the higher su(N) it isn't. 
However the set of matrices (2.1.6) can be replaced by a set with the same 
number of linearly independent matrices which are real linear combinations of the 
matrices (2.1.6) and which satisfy the relation (2.3.3). For su(3) this set is given in 
section 4.1 and for su(4) in section 5.1. From now on, for the Hermitian, diagonal 
basis matrices 

i
λ  we take these ones and the off-diagonal diagonal matrices from 

(2.1.5). 
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Making use of (2.3.2) and (2.3.3) we calculate the trace 

   ( ) ( ), 2i 2i 2 4iikm ikm ml ikli k l m l
m m

Tr C Tr C Cλ λ λ λ λ δ⎡ ⎤ = = =⎣ ⎦ ∑ ∑ . (2.3.4) 

That is, the whole set of 
i

λ  given, the structure constants can be calculated by 

   ( )1 ,
4iikl i k l

C Tr λ λ λ⎡ ⎤= ⎣ ⎦ . (2.3.5) 

Using again the matrix relation ( ) ( )Tr ab Tr ba=  we can treat (2.3.4) as follows 

   
( ) ( ) ( )

( ) ( )
4i ,

, 4i

ikl i k l i k l k i l k i l i k l

ilki l k l i k i l k

C Tr Tr Tr

Tr Tr C

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

⎡ ⎤= = − = − − =⎣ ⎦

⎡ ⎤= − − = − = −⎣ ⎦
 (2.3.6) 

In view of (1.1.20), we realize that an odd permutation of the indices of iklC  
changes its sign. In other words iklC  is totally antisymmetric in all indices. 
Consequently, no index appears more than once in a non-vanishing structure 
constant. 

Here the "Killing form" corresponding to the basis elements 
i

e  and 
j

e  can be 

remodelled. Using (1.1.28) and (2.3.6), we write 

   ( )
, 1 , 1

, .
n n

ikl jlk ikl jkli j
l k l k

B e e C C C C
= =

= = −∑ ∑  (2.3.7) 

Therefore, the diagonal elements  

   ( ) 2

, 1
,

n

ikli i
l k

B e e C
=

= −∑  (2.3.8) 

are negative, because the structure constants are real as stated above. The trace 
of the matrix B , which contains the matrix elements    ( ),

i i
B e e , is negative. In 

section 3.1 the "Killing form" of ( )2su  is calculated in detail. 
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3  The Lie algebra su(2) 
The basis elements of the matrix algebra ( )2su  and the corresponding structure 
constants are given. In detail it is shown that the Lie group (2)SU  "corresponds" to 
the algebra  ( )2su . Another detailed calculation yields the basis matrices of the 

adjoint representation of  ( )2su . They are used to make up the Killing form of 

( )2su . 

Starting from the basis operators constituting ( )2su , a convenient representation 
is looked for with a diagonal "third" element. Its diagonal values characterize its 
eigenfunctions. These are also eigenfunctions of the quadratic Casimir operator. 
The sets of eigenvalues of both operators are developed. Acting on these 
eigenfunctions, the basis operators - or their Hermitian equivalents - generate 
expansion coefficients, which result in irreducible representations. Their basis 
matrices are calculated for 1/ 2j = , 1 and 3/2. 

The "direct product" of two irreducible representations and its affiliated product 
functions are investigated. An equivalent representation has affiliated functions, 
which are constructed using Clebsch-Gordan coefficients and which again set up 
eigenfunctions of the ( )2su -operators. The representation matrices for 

( ) ( ), 1/ 2,1/ 2j j ′ =  and (1,1/2) are calculated. 

A graphical procedure is displayed which generates the set of multiplets resulting 
from a direct product of ( )2su -multiplets. 

3.1  The generators of the su(2)-algebra. 
From section 2.2 we infer that anti-Hermitian 2×2-matrices with vanishing trace 
constitute the real Lie algebra su(2). Following (2.2.9), (2.1.5) and (2.1.6) we write 
the basis elements  like this 

   
1 2 3

0 1 0 i 1 01 1 1i , i , i
2 2 21 0 i 0 0 -1

e e e
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (3.1.1) 

These expressions show that su(2) has dimension 3 = 22 – 1 according to (2.2.10). 
The commutators read 

   
1 2 3
,e e e⎡ ⎤ =⎣ ⎦  , cyclic in 1,2,3. (3.1.2) 

Other exchanges of indices change the relative sign in (3.1.2) and no index 
appears twice in the same non-vanishing equation. From (2.3.1) and (3.1.2) we 
obtain the following simple structure constants 

   123 231 312 1C C C= = = , (3.1.3) 
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which is also true for the isomorphic su(2)-algebra constituted by the basis 

operators ei , (2.2.16). Due to 1 i
2i i

e λ= − , (2.2.9), the basis elements can be 

written with the Hermitian matrices (generators) 

   
1 2 3

0 1 0 -i 1 0
, ,

1 0 i 0 0 1
λ λ λ⎡ ⎤ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎢ ⎥ −⎣ ⎦ ⎝ ⎠ ⎝ ⎠
 (3.1.4) 

for which the relation 

   
1 2 3
, 2iλ λ λ⎡ ⎤ =⎣ ⎦  (3.1.5) 

holds with cyclic permutations (see also (2.3.2)). The 
i

λ ’s are named Pauli spin 
matrices and form a complex Lie algebra of 2×2-matrices. 

At this early stage we mention the parallelism between the real Lie algebra 
( )2su  and the special, linear, complex algebra ( )2,sl C . It comprises 2 2× -

matrices, and the term "special" denotes the vanishing traces. A natural basis of 
this algebra reads 

   
0 1 0 0 1 0

, , 2
0 0 1 0 0 1

x y z⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.1.6) 

satisfying 

   , , , , , 2 .z x x z y y x y z⎡ ⎤ ⎡ ⎤⎡ ⎤ = = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.1.7) 

Obviously, every 2 2× -matrix (including complex elements) with vanishing trace 
can be written as a linear combination of the matrices (3.1.6) using complex 
coefficients. The coincidence of (3.1.7) with (3.3.3) identifies the algebra 
{ }3−

+J ,J ,J  to be  ( )2,sl C . The remark in context with (3.3.29) reveals that  

( )2su  and ( )2,sl C  have the same set of multiplets. 

Here we prove the correspondence between the Lie group ( )2SU  and the Lie 
algebra  ( )2su  as formulated in section 2.2. An element of the group ( )2SU , i.e., 
a unitary 2 2× -matrix U  with det 1U = , can be written using the complex numbers 

andα β  such that 2 2 1α β+ =  as follows: 

   .
* *

U
α β
β α

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (3.1.8) 

Obviously †
2

1 0
1

0 1
UU ⎛ ⎞

= ≡ ⎜ ⎟
⎝ ⎠

 and det 1U =  as demanded. With 1 2iα α α= +  and 

1 2iβ β β= + , ( )1 2 1 2, , , realα α β β , the determinant condition reads 
2 2 2 2
1 2 1 2 1α α β β+ + + = , i.e., there are three free parameters. We set conveniently 
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2 3
1
2

xα = − ,  1 2 2 1
1 1,
2 2

x xβ β= − = −  and obtain ( )2 2 2 2
1 1 2 3

11
4

x x xα = − + + . We take 

the minus sign for 1α . That is, 

   
( )

( )

2 2 2
1 2 3 3 2 1

2 2 2
2 1 1 2 3 3

1 1 1 11 i i
4 2 2 2 .

1 1 1 1i 1 i
2 2 4 2

x x x x x x
U

x x x x x x

⎛ ⎞
− − + + − − −⎜ ⎟

⎜ ⎟=
⎜ ⎟

− − − + + +⎜ ⎟
⎝ ⎠

 (3.1.9) 

We see that every matrix element of U  is an analytic function of the parameters 

1 2 3, ,x x x , as indicated in section 2.2. Following (2.2.12) we calculate 

   
( ) ( )

( ) ( )

1 2 3 1 2 3

1 2 3 1 2 3

11 220 0
1 1

12 210 0
1 1

0,

1 i.
2

x x x x x x

x x x x x x

U U
x x

U U
x x

= = = = = =

= = = = = =

∂ ∂
= =

∂ ∂

∂ ∂
= = −

∂ ∂

 

Using (3.1.1) we sum up: ( ) ( ) ( )
1 2 3

10
1

, , 1,2ik x x x ik
U e i k

x = = =

∂
= =

∂
. Analogously, one 

finds : ( ) ( )
1 2 3

20
2

ik x x x ik
U e

x = = =

∂
=

∂
 and : ( ) ( )

1 2 3
30

3
ik x x x ik

U e
x = = =

∂
=

∂
 in accordance with 

(2.2.12). Indeed, the group ( )2SU  "corresponds" with the algebra ( )2su . 

 How can a given Lie algebra with basis elements 1 2 3, ande e e′ ′ ′  be identified as 
su(2)-algebra? We clear up if every 1 2 3, ,e e e′ ′ ′  can be written using real 
coefficients as a linear combination of the basis elements 1 2 3, ,e e e  of su(2).The 
structure constants of the unidentified Lie algebra meet the relations 

   [ ],ikl l i k
l

C e e e′ ′ ′ ′=∑ . (3.1.10) 

The ansatz just mentioned reads 

   , real,p pq q pq
q

e d e d′ = ∑  (3.1.11) 

which we insert in (3.1.8) this way 

   
,

,′ ⎡ ⎤= =⎣ ⎦∑ ∑ ∑ikl ln n ij km j m ij km jmn n
l n j m j m n

C d e d d e e d d C e .  (3.1.12) 

Because the basis elements en are linearly independent, we obtain three 

equations (for n = 1,2,3):  ikl ln ij km jmn
l j m

C d d d C′ =∑ ∑ . With the values for Cjmn from 

(3.1.3), we have 
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1 2 3 3 2

2 3 1 1 3

3 1 2 2 1 .

ikl l i k i k
l

ikl l i k i k
l

ikl l i k i k
l

C d d d d d

C d d d d d

C d d d d d

′ = −

′ = −

′ = −

∑

∑

∑

. (3.1.13) 

Effectively (3.1.13) displays 9 homogeneous, second-order equations (for i,k = 1, 
2, 3, i < k) for 9 quantities. It is possible that the system is not soluble. If a solution 
exists the investigated algebra is isomorphic to su(2). 

Here we look at the regular or adjoint representation of ( )2su . Owing to 

(1.1.25), its basis elements consists of 3×3 - matrices ( )iad e , which contain the 
matrix elements 

   ( ) =i ikllk
ad e C  (3.1.14) 

With (3.1.3) we obtain 

   

( )

( ) ( )

111 121 131

1 112 122 132

113 123 133

2 3

0 0 0
0 0 1 ,
0 1 0

0 0 1 0 1 0
0 0 0 , 1 0 0 .
1 0 0 0 0 0

C C C
ad e C C C

C C C

ad e ad e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (3.1.15) 

Numerical calculation confirm the relation 

   ( ) ( ) ( )1 2 3,ad e ad e ad e⎡ ⎤ =⎣ ⎦  (3.1.16) 

with cyclic permutations, in analogy to (3.1.2). It results from the fact that the ad -
matrices represent the algebra (see section 1.4). 

Here we calculate the "Killing form" of ( )2su  corresponding to the basis 
elements ie  and 

k
e . This form is also named metric tensor. Using to (2.3.7) we 

have  

( )
3

, 1
, , , 1,2,3ilm klmi k

l m
B e e C C i k

=

= =∑     (3.1.17) 

For ( )2su  we obtain, for example, ( ) 123 232 132 2231 2
, 0 0B e e C C C C= + + =  because of 

232 223 0C C= =  (see (2.3.6) and (3.1.3)). So all off-diagonal elements of the matrix 
B  vanish: 

   ( ), 0 for .
i k

B e e i k= ≠  (3.1.18) 
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Analogously we have, for instance, ( ) 312 321 321 3123 3
, 2B e e C C C C= + = − .In fact, every 

diagonal matrix element reads 

   ( ), 2.
i i

B e e = −  (3.1.19) 

That is, 

   
3

2 1B = − ⋅  (3.1.20) 

 for su(2) with 
3

1 0 0
1 0 1 0

0 0 1

⎛ ⎞
⎜ ⎟≡ ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

3.2  Operators constituting the algebra su(2) 
The basis operators ei are defined in (2.2.13) by 

  ( )
2

1
i k i llk

l
eψ ψ

=

= ∑e . (3.2.1) 

In fact, due to (3.1.1) and (3.2.1) we have 

   ( ) ( )1 1 2 1 2 1
1 1i 0 , i 0
2 2

ψ ψ ψ ψ= − + = − +e e , (3.2.2) 

   ( ) ( )2 1 2 2 2 1
1 1i 0 i , i i 0
2 2

e eψ ψ ψ ψ= − + = − − + , (3.2.3) 

   ( ) ( )3 1 1 3 2 2
1 1i 0 , i 0
2 2

e eψ ψ ψ ψ= − + = − − . (3.2.4) 

Of course, the basis operators of su(2) meet 

   [ ]1 2 3, =e e e ,        cyclic in 1,2,3, (3.2.5) 

in analogy with (3.1.2). Because, making use of (2.2.14) and (1.3.11), the matrix 
relation (3.1.2) can be deduced from (3.2.5). The inverse is also true. Alluding to 
the quantum mechanical operator of the angular momentum, we introduce 

   ii i= −e J ,    i = 1, 2, 3. (3.2.6) 

From (2.2.15) we have 

   ( )† †- i i ii i i i= + = − = +e J J J . (3.2.7) 

That is, the operators Ji are Hermitian corresponding to iλ , (2.2.18). From (3.2.5) 
and (3.2.6) we obtain 

   [ ]1 2 3, i=J J J     with cyclic permutations. (3.2.8) 
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We introduce the so-called quadratic Casimir operator of ( )2su  (see also section 
4.11) 

   2 2 22
1 2 3= + +J J J J  (3.2.9) 

and look at the commutator 

2 22
1 2 1 3 1 2 2 1 1 2 2 3 3 1 1 3 3

2 1 2 2 3 2 1 2 3 2 3 1 3 3 2 3 1 3 2 3

, , ,

i i i i 0,J

⎡ ⎤ ⎡ ⎤⎡ ⎤ = + = − + − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− − − + − − + =

J J J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J J J J
(3.2.10)

which holds for every Ji : 

   2, 0i⎡ ⎤ =⎣ ⎦J J . (3.2.11) 

Due to (1.3.16), (3.2.7) and (3.2.9) J2 is Hermitian too.  

Before we investigate the eigenvalues of 2J  and 3J , we deal with the 
representation of the algebra { }1 2 3, ,e e e . If an operator ei acts on an arbitrary, 
affiliated function kψ  according to (1.3.2) the relation 

   ( )
1

d

i k li lk
l

ψ ψΓ
=

= ∑e e  (3.2.12) 

must hold. If the matrix ( )3Γ e  is not diagonal, in order to achieve analogy to 
(3.1.1) and (2.2.13) it is diagonalized (it can be shown that the criteria for the 
diagonalizability are fulfilled). The well-known procedure has been displayed partly 
in section 1.5, thus, here we outline it only briefly. 

A non-singular matrix S  has to be found which forms an equivalent  
representation with the elements 

   ( ) ( )1
ii SSΓ Γ−′ =e e ,   i = 1,2,3, (3.2.13) 

(see (1.5.4)) in such a way that ( )3Γ ′ e  is diagonal with matrix elements 

1 2, , .. , dγ γ γ . From ( ) ( )33 SS Γ Γ′ =e e  we obtain for the matrix element (k,m) 

   ( ) ( )3
1 1

d d

kl km m lmlm kl
l l

S S SγΓ Γ
= =

= =′∑ ∑3e e  . (3.2.14) 

For a given m we have a system of d linear, homogeneous equations 



 31

( )( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3 1 3 2 3 311 12 13

3 1 3 2 3 321 22 23

3 1 3 2 3 331 32 33

... 0

( ) ... 0

( ) ... 0

. . . .

. . . . ,

m m m m

m m m m

m m m m

S S S

S S S

S S S

γ

γ

γ

Γ Γ Γ

Γ Γ Γ

Γ Γ Γ

− + + + =

+ − + + =

+ + − + =

e e e

e e e

e e e  (3.2.15) 

which is soluble if the determinant of the system vanishes i.e. 

   ( )3 1 0mγΓ − =e . (3.2.16) 

This secular equation yields d roots mγ , which constitute ( )3Γ ′ e  and which permit 
to calculate the matrix S  by means of (3.2.15). According to (1.5.7) the new basis 

functions k , which correspond to the representation ( ){ }iΓ ′ e , read 

   mk m
m

k S ψ= ∑  . (3.2.17) 

Because ( )3Γ ′ e  is diagonal, according to (1.5.8), the following eigenvalue 
equations hold 

   3 kk kγ=e ,    k = 1,2, .. ,d. (3.2.18) 

Here we go back to the operators 3J  and 2J . We define ( )
3i k

k Jγ = −  and write 
with the aid of (3.2.6)  ( )

3 3i i kk J k− = −J . Since the state k  is characterized by 

the eigenvalue ( )
3

kJ , we write for it ( )
3

kJ . Finally we drop the index k and obtain 
the following eigenvalue equation 

   3 3 3 3J J J=J . (3.2.19) 

It can be shown that the eigenvalues 3J  are distinct. We now claim that the states  

3J  are also eigenstates of the operator 2J , (3.2.9). Due to (3.2.11) we have 
2 2 2 2 2

3 3 3 3 3 3 3 3 30 , ( )J J J J J⎡ ⎤= = − = −⎣ ⎦J J J J J J J J J  and 2
3 3( )J =J J  

2
3 3( )J JJ . That is, 2

3( )JJ  is eigenket of 3J  alike to 3J  and therefore it must 

be proportional to 3J  like this 

   2
3 3J J J=J . (3.2.20) 

This means that 3J  is also an eigenfunction of 2J  and is characterized by both 

eigenvalues, that is why we replace 3J  by 3JJ . The eigenvalues 3J  and J  of 

the operators 3J  and 2J  are real, as is well-known for Hermitian operators. 
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3.3  Multiplets of su(2) 
In order to investigate the quantities 3 andJ J  we introduce the following step 
operators (sometimes named ladder- or shift operators) 

   1 2 1 2i , i+ −= + = −J J J J J J  . (3.3.1) 

They differ slightly from analogous operators used for example by Talmi, 1993, p. 
79 or Pfeifer, 1998, p. 43. Here we follow partially the treatise of Biedenharn et. al., 
1981, p. 31. Due to (3.2.7) the adjoint operator of +J  reads 

   † † ††
1 2 1 2 1 2( i ) i i .+ −= + = − = − =J J J J J J J J  (3.3.2) 

Using the expressions (3.2.8), one proves the following commutator relations 

   [ ] [ ] 2 2
3 3 3, 2 , , , , 0 , , 0 .+ − ± ± ±⎡ ⎤ ⎡ ⎤= = ± = =⎣ ⎦ ⎣ ⎦J J J J J J J J J J  (3.3.3) 

We define the following kets 

   3 3andJJ JJ+ −+ ≡ − ≡J J  (3.3.4) 

and apply the third expression of (3.3.3):  2
3 30 , JJ J JJ± ±⎡ ⎤= = ± −⎣ ⎦

2J J J J , i.e. 

   J± = ±2J  . (3.3.5) 

Similarly, making use of (3.3.3) we form 

   [ ]3 3 3 3 3 3 3,JJ JJ JJ JJ± ± ± ±± ≡ = ± = ±J J J J J J J∓  i.e. (3.3.6) 

   ( )3 3 1J± = ± ±J . (3.3.7) 

That is to say, the state 3JJ±± ≡ J is proportional to 3, 1J J + . Therefore +J  is 

named raising operator and −J  lowering operator. 

The question arises how often in succession the operator +J  can act on 3JJ or 

whether a positive integer maxk  exists so that 3 0k JJ+ =J  for maxk k> . We make 

up the inner product of two + -states and take (1.3.15) and (3.3.2) into account:   

( ) ( ) ( )3 3 3 30 JJ JJ JJ JJ .+ + − +≤ + + = =J J J J  For the operator product − +J J  

we develop 

( ) ( )

( ) ( )

2 2
2 2 2 22

1 2 3 3

2 2 2
3 3 3 3

1 1
2 2i

1 1 2
2 2

.

+ − + −

+ − − + + − − + − + − +

⎛ ⎞ ⎛ ⎞= + + = + + − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ + = − + + = + +

J J J J J J J J J

J J J J J J J J J J J J J J J J
 (3.3.8) 

Therefore we have 
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( )( ) ( )

33 3 3 3 3

3 3 3 3 3 3

0

1 1

JJ JJ JJ JJ

J J J JJ JJ J J J .

− +≤ = − − =

− + = − +

2 2J J J J J
 (3.3.9) 

That is why the quantity 3J , which increases by 1 with every application of +J , has 
to meet the following condition 

   ( )3 3 1J J J≥ +  (3.3.10) 

and there must exist a maximal value 3,maxJ  which satisfies 3 0,maxJJ ≠  and 

3 0,maxJJ+ =J . The inner product of this state with itself must vanish i.e. 

( )( )3 3 3 3 3 30 1,max ,max ,max ,max ,max ,maxJJ JJ J J J JJ JJ− += = − +J J , which yields 

   ( )3 3 1,max ,maxJ J J= + . (3.3.11) 

Analogously, one observes that the operator J−  cannot arbitrarily often act on the 
state 3JJ . A minimal value 3,minJ  exists and one proves for it 

    ( )3 3 1,min ,minJ J J= − . (3.3.12) 

Starting from an arbitrary state 3JJ  the number k of raising steps and l falling 
steps are possible in the following sense 

   
1

3 3

1
3 3

0 but 0 and

0 but 0

J J

J J

k k

l l

JJ JJ

JJ JJ .

+
+ +

+
− −

≠ =

≠ =
 (3.3.13) 

Therefore, 3 3 3 3and,max ,minJ J k J J l= + = −  hold, which we insert in (3.3.11) 
and (3.3.12) like this: ( ) ( ) ( ) ( )3 3 3 31 1J J k J k J l J l= + + + = − − − . We rearrange 

this equation as follows ( ) ( ) ( )31 2 1k l J k l l k+ + = + + −  and obtain 

   3 which yields
2

l kJ ,−
=  (3.3.14) 

   3 3 3 3 and
2 2,max ,min

k l k lJ J k , J J l+ +
= + = = − = −  (3.3.15) 

   ( )3 3 1 1
2 2,max ,max

k l k lJ J J + +⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

. (3.3.16) 

Thus, we have found a set of 1k l+ +  eigenkets with the positive eigenvalue J  of 
the operator 2J  according to (3.3.16) and with the following 3J  values 
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3 3 3

3 3

1 1 1
2 2 2 2

1 1
2 2

,max

,min

k l k l l k l kJ , , ... ,J , J ,

l k k lJ , ... ,J .

+ + − −
= − + = + =

− +
− = − = −

 (3.3.17) 

As usual, we introduce the symbol 
2

k lj +
= , and obtain for J   

   ( )1J j j= + . (3.3.18) 

If k l+  is even, the quantity j  is an integer, otherwise it is half integer. That is, j  

can take on the values 1 30 1
2 2

, , , , ...  .The eigenvalue of 3J  runs through the area 

between 3 3and,max .minJ j J j= = −  in steps amounting 1. From now on we name it 

m.  This so-called magnetic quantum number is j, j - 1, ... ,0 (or 1 1
2 2

, − ), ... , -j + 1, 

or –j. Of course m  is only half integer if j is half integer. 

Summing up, for an arbitrary function jm  we make the statements 

   ( )2 1 31 0 1
2 2

jm j j jm , j , , , , ...= + =J           (3.3.19) 

   3 1 1jm m jm ,m j , j , ... , j , j .= = − − + −J     (3.3.20) 

The states 1 1j j , j , j , ... , j , j , j , j− − + −  constitute a function multiplet (see 

section 1.5) of the Lie algebra based on { }3J ,J ,J+ − , (3.3.3), with the ordering 
number j. We name it [ ] ( )2 1or 2jj M j+ . From (3.3.7) we have deduced that jm+J  
is proportional to 1j ,m + , that is, 

   1, jmjm N j ,m+ += +J . (3.3.21) 

We form the norm  

   ( ) 2
1 1, jm , jm , jmjm jm N * j ,m N j ,m N+ + + + += + + =J J . (3.3.22) 

On the other hand we write with the help of (3.3.2) and (3.3.8) 

   
( )

( ) ( ) ( )

†

3 3 1 1 1

jm jm jm jm jm jm

jm jm j j m m .
+ + + + − += = =

− + = + − +2

J J J J J J

J J J
 (3.3.23) 

That is, ( ) ( )2
1 1, jmN j j m m+ = + − + . (3.3.24) 

Choosing the arbitrary phase factor +1 we write 

   ( ) ( )1 1 1jm j j m m j ,m= + − + ++J . (3.3.25) 
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Analogously, one obtains 

( ) ( )1 1 1jm j j m m j ,m− = + − − −J . (3.3.26) 

For the lowest su(2)-multiplets the following relations hold 

   

1 1 1 1
2 2 2 2

1 1 2 1 0

1 0 2 1 1

3 3 3 13
2 2 2 2
3 1 3 12
2 2 2 2
3 1 3 33
2 2 2 2

j ,m , ,

j ,m , ,

j ,m , ,

j ,m , ,

j ,m , ,

j ,m , .

±

±

±

±

±

±

= = = ±

= = =

= = = ±

= = =

= = = ±

= = ± = ±

J

J

J

J

J

J

∓

∓

∓ ∓

∓

 (3.3.27) 

In each equation (3.3.27) either the upper or the lower sign has to be taken 
everywhere. Other expressions with these operators and these states vanish.  

The commutators (3.3.3) show that the operators 3and,+ −J J J  constitute a Lie 
algebra. Due to (3.2.6) and (3.3.1) they read 

   ( ) ( )1 2 1 2 3 3i i i i and i,+ −= + = − =J e e J e e J e . (3.3.28) 

Thus, the elements of this algebra are complex linear combinations of 
1 2 3and,e e e  i.e. they make up the complexified version of su(2), which is named 

( )2,sl C  (see (3.1.7)). The inverse of (3.3.28) reads 

   ( ) ( )1 3 3
1 1 1
2i 2 i

, ,+ − + −= + = − − =2e J J e J J e J , (3.3.29) 

which reveals that an operator ei  acting on a state ,j m′  generates a complex 
linear combination of such states ,j m , i.e. the result lies in the vector space over 

the field of complex numbers of the functions { },j m . Consequently, the functions  

{ },j m  are also associated to the Lie algebra su(2) and are named su(2)-

multiplet. The representations ( ) ( ){ }Jj
iΓ  or ( ) ( ){ }ej

iΓ  are irreducible (see section 

3.4). 

The multiplet 1 1 1 1
2 2 2 2

, , ,−  is named fundamental su(2)-multiplet. 
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3.4  Irreducible representations of the su(2)-algebra 
According to (1.3.2) we can write the equations (3.3.25), (3.3.26) and (3.3.20) like 
this 

   ( ) ( )
j

j
i i m m

m j
jm jmΓ

′
′= −

′= ∑J J   with  3i , , .= + −  (3.4.1) 

Due to (1.3.6) the coefficients on the right hand side of (3.4.1) are matrix elements 
this way 

   ( ) ( )j
i im m jm jmΓ ′

′=J J   with  3i , , .= + −  (3.4.2) 

The su(2)-multiplets { }jm  are characterized by the quantum number j (see 
section 3.3), that is why the ' sΓ  have a common index j. From section 1.4 we 
know that the matrices ( ) ( )j

iΓ J  are basis elements of a representation of the Lie 
algebra { }3, ,+ −J J J . In particular due to (3.3.3) the following relations hold: 

   

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3

3

2j j j

j j j

, ,

, .

Γ Γ Γ

Γ Γ Γ

+ −

± ±

⎡ ⎤ =
⎣ ⎦
⎡ ⎤ = ±
⎣ ⎦

J J J

J J J
 (3.4.3) 

We calculate some matrix elements. Due to (3.3.27) for 1
2

j =  we have 

   ( ) ( ) ( )
1 1 1
2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

0
,

Γ Γ Γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ + +− − −
= = =J J J  and  ( )

1
2

1 1
2 2

1
,

Γ
⎛ ⎞
⎜ ⎟
⎝ ⎠

+ −
=J . For 

1 31 and
2 2

j , ,=  the matrices ( ) ( )j
iΓ J  read like this 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1
2 2 2 3

1 1 1
3

1 00 1 0 0 2
0 0 1 0 10

2

0 2 0 0 0 0 1 0 0
0 0 2 2 0 0 0 0 0
0 0 0 0 0 10 2 0

J J J

J J J

, , ,

, , ,

Γ Γ Γ

Γ Γ Γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ −

+ −

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞

= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎜ ⎟−⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

 (3.4.4)  
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( ) ( )

( )

3 3
2 2

3
2 3

0 0 0 00 3 0 0
0 0 2 0 3 0 0 0

0 2 0 00 0 0 3
0 0 0 0 0 0 3 0
3 0 0 0
2

10 0 0
2

10 0 0
2

30 0 0
2

J J

J

, ,

.

Γ Γ

Γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+ −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.4.5) 

Elementary calculations confirm that the matrices (3.4.4) and (3.4.5) satisfy the 
relations (3.4.3). Due to (3.3.29) the relations 

      

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 2

3 3

1 1
2i 2
1
i

j j j j j j

j j

, ,Γ Γ Γ Γ Γ Γ

Γ Γ

+ − + −= + = − −

=

e J J e J J

e J
 (3.4.6) 

hold. Thus we have 

   ( ) ( ) ( )
1 1 1
2 2 21 2 3

1 00 1 0 11 1 1 2
2i 2 i1 0 1 0 10

2

, ,Γ Γ Γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟−⎛ ⎞ ⎛ ⎞

= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎜ ⎟−⎜ ⎟

⎝ ⎠

e e e  (3.4.7) 

in accordance with (3.1.1). The higher representations read 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1 2

31
23 1

0 2 0 0 2 0
1 12 0 2 2 0 2
2i 2

0 2 0 0 2 0

0 3 0 0
1 0 0

3 0 2 01 10 0 0
i 2i 0 2 0 30 0 1

0 0 3 0

e e

e e

, ,

, ,

Γ Γ

Γ Γ
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟

= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟
⎝ ⎠

 (3.4.8)  
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( ) ( )
3 3
2 22 3

3 0 0 0
2

0 3 0 0 10 0 03 0 2 01 1 2
2 i 10 2 0 3 0 0 0

20 0 3 0
30 0 0
2

e e, .Γ Γ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞−

⎜ ⎟ ⎜ ⎟
−⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
−⎜ ⎟ ⎜ ⎟−

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.4.9) 

3.5  Direct products of irreducible representations and 
their function sets. 
For nuclear physics and the physics of elementary particles direct products of 
irreducible representations, their multiplets and their reduction are very important.  

In this and in the next section we will deal with the Lie algebra { }3, ,+ −J J J  instead 

of the su(2)-algebra { }1 2 3,e e ,e . The transformation relation (3.3.29) between both 
algebras and the corresponding equations (3.4.6) for the representations are 
simple. The multiplets { }jm  are affiliated to both algebras. 

Suppose a quadratic matrix A  with dimension d and a quadratic matrix B  with 
dimension d' are given. Their direct product A B⊗  is a matrix with the dimension 
d d ′⋅ , the rows and the columns of which are denoted by pairs of indices. It reads 

   ( ) hk sths,kt
A B A B⊗ = ⋅ . (3.5.1) 

In the double index hs of the rows the quantity h grows slowly and s runs through 
the area of d' over and over. The double index kt of the columns behaves 
correspondingly. Equation (3.5.1) can be understood like this: replacing in A  every 
element ijA  by the matrix ijA B⋅  results in the direct product A B⊗ . 

For the Lie algebra { }3, ,+ −J J J  the direct product ( ) 2 1
1( j )

i j '
Γ

+
⊗J  of the 

irreducible representation matrix  ( )( j )
iΓ J  (with dimensions 2j+1) and of the 

identity matrix 
2 1

1
j ' +

 (with dimension 2j ' +1) is important. A general matrix element 

is written like this 

    ( )( ) ( )2 1 2 1
1 1( j ) ( j )

i i hkj ' j ' , sths,kt
Γ Γ

+ +
⊗ = ⋅J J  . (3.5.2) 

The matrix which is described by (3.5.2), reads as follows (we drop the arguments 
(Ji)): 
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12 1311

11 12

11 12

21 22

21 22

21 22
2 1

31

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1( j )
j '

.
. .

. . . .

. .

.
. .

. .

Γ Γ Γ
Γ Γ

Γ Γ
Γ Γ

Γ Γ

Γ Γ
Γ

Γ
+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⊗ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

               (3.5.3) 
.The analogously defined direct product matrix ( )2 1

1 ( j )
ij

Γ ′

+
⊗ J  reads as follows:

  

12 1311

21 22

31

11 12 13

21 22

31

2 1
11

0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

1

0 0

0

( j )
j '

.

.
. .

.

.
. .

.
.

Γ Γ Γ
Γ Γ
Γ

Γ Γ Γ
Γ Γ
Γ

Γ
Γ

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⊗ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

              (3.5.4) 
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Now we show how two representations can be coupled to a "direct product" 
using the expressions above. We start with two function sets { },j m  and  { },j m′ ′  

and form the set of all kinds of products jm j m′ ′⋅ . These quantities constitute a 

( )( )2 1 2 ' 1j j+ + -dimensional vector space. Taking into account the relation 
between a real Lie algebra and the corresponding Lie group (see section 2.2) and 
using matrix exponential functions, one shows (Cornwell, 1990, p.412): 

   ( ) ( ) ( )' ' ' ' ' ' ,i i ijm j m jm j m jm j m⋅ = ⋅ + ⋅e e e         (3.5.5) 

which is given here without proof and which holds correspondingly for the most 
real Lie algebras. We put together the following linear combination: 

   ( )( ) ( )( ) ( )( )1 2 1 2 1 2i i ' ' i i ' ' i i ' ' ,jm j m jm j m jm j m+ ⋅ = + ⋅ + ⋅ +e e e e e e  (3.5.6) 

which stands for (see (3.3.28)) 

   ( ) ( ) ( )' ' ' ' ' ' ,jm j m jm j m jm j m+ + +⋅ = ⋅ + ⋅J J J        (3.5.7) 

Analogous relations hold for every ( ), ,3i i = + −J . We use the identity 

( )( )2 11 j
n nm

jm jn+≡ ∑  (containing elements of the unity matrix), insert (3.4.1) in 

the equation above and obtain 

  

( ) ( ) ( )( ) ( )( ) ( )( )( )2 1 2 1' ' 1 1 ' 'j j
i i ij jnm n mn m nmnn

jm j m jn j nΓ Γ ′
′+ + ′ ′′ ′′

⋅ = + ⋅∑J J J .(3.5.8) 

The resulting sum of two direct products on the right hand side is named 

   ( ) ( ) ( ) ( ) ( )2 1 2 1
1 1 , ,3.jj j j

i i ij j
iΔ Γ Γ′ ′

′+ +
≡ ⊗ + ⊗ = + −J J J        (3.5.9) 

Thus we can write 

   ( ) ( )( ) ( )
,

' ' ' ' .jj
i i nn mm

nn
jm j m jn j nΔ ′

′ ′
′

⋅ = ⋅∑J J       (3.5.10) 

Although the matrices ( )jj
iΔ ′ J  are not simple direct products but a sum of such 

products (see (3.5.9)), they are frequently named "direct products" of ( ) ( )j
iΓ J  and 

( ) ( )j
iΓ ′ J . According to section 1.4, the matrices  ( )jj

iΔ ′ J  are representations of 

the Lie algebra { }3, ,+ −J J J , and the set    { }' 'jm j m⋅  contains the affiliated 
functions. 

The set of states { }' 'jm j m⋅  is marked by [ ] [ ]j j ′⊗ . It is named also tensor 

product or direct product of the multiplets [ ]j  and [ ]j ′ . 
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We look at two examples of "direct products" of two irreducible 

representations. With the aid of (3.4.4) and (3.5.9) for 1
2

j j '= =  we obtain 

   

( ) ( )

( )

1 1 1 1
2 2 2 2

1 1
2 2 3

0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, ,

.

Δ Δ

Δ

+ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟−⎝ ⎠

J J

J

 (3.5.11) 

With elementary calculation one can check that the matrices ( )jj '
iΔ J  of (3.5.11) 

meet, in analogy to (3.3.3)  and (3.4.3) the relations 

   ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 23 32, , , .Δ Δ Δ Δ Δ Δ+ − ± ±

⎡ ⎤ ⎡ ⎤
= = ±⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
J J J J J J  (3.5.12) 

In accordance with (3.5.10), we obtain with the help of (3.5.11) the following first 

component of the product of the row vector of states with the matrix ( )
1 1
2 2Δ −J : 

   
1

0 0 0 0
1 0 0 01 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 1 0 0 0
0 1 1 0

1 1 1 1 1 1 1 10 1 1 0
2 2 2 2 2 2 2 2

J , , ,

.

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞′ ′ ′ ′ ′
⎜ ⎟⎜ ⎟⎜ ⎟= − − − − ⋅ =
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

′ ′ ′ ′
= ⋅ + ⋅ − + − + ⋅ − −

(3.5.13) 

Only the m-values ½ or –½ are written.  

In the second example we combine multiplets with j = 1 and j' = ½ (see (3.4.4) 
and (3.5.9)) 
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( ) ( )

( )

1 1 2 1 1 2

1 1 2
3

0 0 0 0 0 00 1 2 0 0 0
1 0 0 0 0 00 0 0 2 0 0
2 0 0 0 0 00 0 0 1 2 0

0 2 1 0 0 00 0 0 0 0 2
0 0 2 0 0 00 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2 1 0
3 0 0 0 0 0
2

10 0 0 0 0
2

10 0 0 0 0
2

10 0 0 0 0
2

10 0 0 0 0
2

30 0 0 0 0
2

, / , /

, /

, ,Δ Δ

Δ

+ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜= ⎜

−

−

−
⎝

J J

J .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠
 (3.5.14) 

As in the first example one checks that the ( )1 1 2, /
iΔ J 's are basis matrices of the 

representation with affiliated functions 11
2

n n′  (n = 1,0,-1; n' = ½, -½). 

3.6  Reduction of direct products of su(2)-representations 
and multiplets. 
In connection with (3.5.10) we have noted that the matrices ( )jj

iΔ ′ J  are a 
representation of the algebra { }3, ,+ −J J J . Although the matrices in (3.5.11) and 
(3.5.14) have no block diagonal form, they are not irreducible, which holds 
generally. Making use of a similarity transformation as in section 1.5 one can bring 
the matrices  ( )jj

iΔ ′ J  in a block diagonal form, which reveals the set of irreducible 
representations to which the representation can be reduced. At the same time, 
one obtains the multiplets of the involved irreducible representations. 

We start with the transformation of the function products ( )jm j m′ ′⋅ . The 
theory of direct products of irreducible representations shows that there exist  non-
singular matrices S  which transform the function product according to (1.5.7) in 
such a way that the resulting functions have again the properties of su(2)-functions 
with the parameters M (eigenvalue of 3J ) and J, where J ( ( )1J J +  is an 

eigenvalue of 2J ). Thus one can write 
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   jj
mm ,JM

mm
JM S jm j m′

′
′

′ ′= ∑ . (3.6.1) 

The functions JM  obey also the step operators andJ J+ − . The coefficients 
jj

mm ,JMS ′
′  are named Clebsch-Gordan coefficients (CGc) and they are frequently 

marked by ( )jmj m | JM′ ′ . They vanish if m m M′+ ≠  and if j j J′+ >  or | j j | J′− < , 
that is, if the triangle conditions are violated. The values of J are 

1 1 orj j , j j , ... ,| j j | , | j j |′ ′ ′ ′+ + − − + − . Thus we give without proof: 

   ( )jj
mm ,JMS jmj m | JM′

′ ′ ′= . (3.6.2) 

In the literature the symmetry properties of the Clebsch-Gordan coefficients are 

made visible especially by means of the 3-j symbol 
j j J

m m M
′⎛ ⎞

⎜ ⎟′ −⎝ ⎠
, which is 

defined as follows 

   ( ) ( )1 2 1j j M j j J
jmj m | JM J

m m M
′− + ′⎛ ⎞′ ′ = − + ⎜ ⎟′ −⎝ ⎠

. (3.6.3) 

Edmonds (1996) gave algebraic expressions for some 3-j symbols. Numerical 
tables were published by Rotenberg, Bivins et. al. (1959) and Brussaard and 
Glaudemans (1977). 

If a parameter of a CGc is an algebraic expression, it is usual to fence it in by 

commas. For j' = ½ the Clebsch-Gordan coefficients 1
2

j ,M m , j ,m | JM⎛ ⎞′ ′ ′− =⎜ ⎟
⎝ ⎠

 are 

given (without proof) by the following expressions 

   

1 1
2 2

1 1
2 2

1 1
2 2

1 1
1 2 2
2 2 1 2 1

1 1
1 2 2
2 2 1 2 1

| m m

_ _ _ _

j M j M
J j |

j j

j M j M
J j | .

j j

′ ′= = −

⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟
= + ⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− + + +⎜ ⎟ ⎜ ⎟
= − − ⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (3.6.4) 

With the help of (3.6.2) and (3.6.4) we calculate, for example, the matrix element 
1/ 2

1/ 2
1/ 2, 1/ 2, 1, 0

1 1 1 1 1/ 2 0 1/ 2 1, , 10
2 2 2 2 1 1 2

j j
m m J MS ′= =

′=− = = =

+ +⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
, and we obtain finally 

the following transformations matrix jjS ′ for j = j' = ½  
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1 1
2 2

1 0 0 0
1 10 0
2 2

1 10 0
2 2

0 0 1 0

S

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎝ ⎠

, (3.6.5) 

where the columns are indicated by (J,M) = (1,1), (1,0) , (1,-1), (0,0) and the rows 
by (m,m') = (1/2,1/2), (1/2,-1/2), (-1/2,1/2), (-1/2,-1/2). For j = 1 and j' = ½ we have 

   1 1 2

1 0 0 0 0 0

1 20 0 0 0
33

2 10 0 0 0
3 3

2 10 0 0 0
3 3
1 20 0 0 0

33
0 0 0 1 0 0

, /S .

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

 (3.6.6) 

We now work on the "direct product" of representations applied in (3.5.10), i.e., 
in ( ) ( )( ) ( )

,

jj
i i

nn nn mm

jm j m jn j nΔ ′

′ ′ ′

′ ′ ′ ′⋅ = ⋅∑J J  for , ,3i = + − . We multiply the 

equation by ,
jj

mm JMS ′
′ , sum over m  and m′  and obtain 

   ( ) ( )( ) ( ), ,,
.jj jj jj

i mm JM i mm JMnn mm
mm nn mm

S jm j m S jn j nΔ′ ′ ′
′ ′′ ′

′ ′ ′

⎛ ⎞′ ′ ′⋅ = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑J J , (3.6.7) 

The sum on the left hand side represents JM , (3.6.1). On the right hand side we 

make use of the identity ( ) ( )pn p n
pp

jn j n jp j pδ δ ′ ′
′

′ ′ ′ ′⋅ ≡ ⋅∑  and of the expression 

for an element of the identity matrix 

   ( ) ( )
1

, ,
,

1jj jj
pp J M pn p npp nn

J M J M nn

S S δ δ
−′ ′

′ ′ ′ ′ ′′ ′
′ ′ ′ ′ ′

= =∑ , 

and obtain 

   ( ) ( )( ) ( )1

, ,,
.jj jj jj jj

i i mm JM pp J Mnn mm
J M nn mm ppJ M nn

JM S S S jp j pΔ
−′ ′ ′ ′

′ ′ ′ ′′ ′
′ ′ ′ ′ ′′ ′ ′

⎛ ⎞ ′ ′= ⋅ ⋅⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑J J    (3.6.8) 

Using (3.6.1) again, we can write 

   ( ) ( )
1

,
, , ,3.jj jj jj

i i
J M JMJ M

JM S S J M iΔ
−′ ′ ′

′ ′′ ′

⎛ ⎞ ′ ′= = + −⎜ ⎟
⎝ ⎠∑J J   (3.6.9) 
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Due to (3.3.20), (3.3.25) and (3.3.26), the operators iJ  have no influence on J. 

Therefore, in (3.6.9) both sides must have the same eigenvalue of 2J . That is, 
J J′ =  holds, or all the matrix elements 

   ( ) ( ) ( )( )1 jj jjjj jj
J ' M ',JMi i

J ' M ',JM
S SΔ Δ

− ′ ′′ ′ ′⎛ ⎞ ≡⎜ ⎟
⎝ ⎠

J J  (3.6.10) 

with J J′ ≠  vanish. That is to say, ( )( )jj
iΔ ′ ′J  has the expected block diagonal form, 

for instance, like this 

( )( )

( ) ( )

( ) ( )

0 0

0 0

0 0

a

b

J
i

jj
i J

i

J

J

Γ

Γ
Δ ′

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟′ ⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

J

i i i

i i
i i i

i i i i i
i i i i i

i i i i
i i i i i
i i i i i

i i
i i

 (3.6.11) 

To bJ J= , say, belong 2 1bJ +  values M and the same number of values M' , which 

constitute a square region in ( )( )jj
iΔ ′ ′J . So it is evident that the representation  

( ){ }jj
iΔ ′ J  is reducible and the blocks appear in  ( )( )jj

iΔ ′ ′J , which are 

characterized by a bJ ,J , ...  . The relation (3.6.9) reduces to 

( ) ( )( )1
3jjjj jj jj

i i
M MJM',JM JM ,JM

JM S S JM' JM' , i , , .ΔΔ
− ′′ ′ ′

′ ′ ′

′⎛ ⎞= ≡ = + −⎜ ⎟
⎝ ⎠∑ ∑J J  (3.6.12) 

Formally it is identical to (3.4.1) and describes the relations in a square block of 
(3.6.11), Characterized by J, which is an irreducible representation with the 
multiplet { }JM . 

We now calculate numerically the matrices ( )( )jj
iΔ ′ ′J , (3.6.10), for the 

examples (3.5.11) and (3.5.14). It is not difficult to find the inverse of the matrix 
jj 'S . Clebsch-Gordan coefficients meet the following orthogonality relation 

   ( ) ( )
a b

a a b b a a b b JJ ' MM '
m m

j m j m | JM j m j m | J M δ δ′ ′ =∑  (3.6.13) 
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The right hand side is the element ( )JM,J M′ ′  of the identity matrix  1 , where we 
use double indices (JM). Due to (3.6.2), the second CGc is identical to    

a b
a b

j j
m m ,J MS ′ ′ . If we denote the first CGc in (3.6.13) by ( ) 1

a b
a b

j j
JM ,m mS

−
 we have  

   
( ) ( ) ( )

( ) 1

1

1

1

or

a b a b

a b
a b

a b

a b a b

j j j j
m m ,J M JM , J MJM,m mm m

j j j j

S S

S S .

−

′ ′ ′ ′

−

=

⋅ =

∑
 (3.6.14)  

We see that our denomination 

   ( ) ( )
1

a b
a b

j j
JM ,m m a a b aS j m j m | JM

−
=  (3.6.15) 

is correct. Making use of (3.6.5), (3.6.15) and (3.5.11), elementary calculations 
yield 

   

( ) ( )

( ) ( )

11 1 1 11 1 1 1
2 2 2 22 2 2 2

1 1 1 1
2 2 2 2 3

0 2 0 0

0 0 2 0
0 0 0 0
0 0 0 0

0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0

0 0 1 00 2 0 0
0 0 0 00 0 0 0

S S ,

, ,

Δ Δ

Δ Δ

−

+ +

−

⎛ ⎞
⎜ ⎟′⎛ ⎞ ⎛ ⎞ ⎜ ⎟≡ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

J J

J J

 (3.6.16) 

which we write by means of (3.4.4) like this 

   ( )
( ) ( )

( ) ( )

11 1
2 2

0

0

0
3

0

0 0 0

i
i

i

, i , , .
Γ

Γ

Δ

⎛ ⎞
⎜ ⎟′⎛ ⎞ ⎜ ⎟= = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

J
J

J

i i i

i i
i i i

 (3.6.17) 

For the second example one obtains 

   ( )( )1 1 2

0 3 0 0 0 0
0 0 2 0 0 0

0 0 0 3 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

, /Δ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟′
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

J   (3.6.18) 

and can summarize 
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   ( )( )
( )

( )

3
2

1 1 2

1
2

0 0

0 0
0 0

3
0 0

0 0 0 0
0 0 0 0

i

, /
i

i

, i , , .

Γ

Γ

Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

′ ⎜ ⎟= = + −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

J

J

J

i i i i

i i i
i i i i
i i i i

i
i i

 (3.6.19) 

We write this equation symbolically like this  

    ( )( ) ( ) ( )
3 2

1 1 2 1 1 2 1 1 2 1 1 2
1 2 3 2

1 2
with 1

/
, / J, / , / , /

J / /i i
J /

n n nΔ Γ
=

′
= ⊕ = =∑J J  (3.6.20) 

The numbers jj
Jn ′  specify how often the irreducible representation ( ) ( )J

iΓ J  
appears. It can be shown that for su(2) generally the relation  

  

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1

1

1 1

1 1

jj jjjj jj
i i

j jjj j j jj
i i

j j j j | j j | | j j |
i i i i

S S

S S

...

Δ Δ

Γ Γ

Γ Γ Γ Γ

−′ ′′ ′

− ′′ ′ ′

′ ′ ′ ′+ + − − + −

′ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

⊗ + ⊗ =

⊕ ⊕ ⊕ ⊕

J J

J J

J J J J

 (3.6.21) 

holds. That is, here we have 1′ =jj
Jn , which we have found already in (3.6.20) and 

(3.6.17). 

The functions which belong to the representation (3.6.19) are calculated with the 
aid of (3.6.1) and (3.6.6) like this 

  

1 1 2
1 1 2 3 2

3 3 1 1 1 11 1 1 1
2 2 2 2 2 2

3 1 1 1 1 2 1 11 1 1 0
2 2 2 2 3 2 22

1 1 1 1 1 3 1 11 0 1 1
2 2 2 2 2 2 23

j , j /
m ,m / ,J M /, S j ,m j ,m , ,

, , , , ,

. .

. .

, ` , , , .

′= =
′ ′ ′= = = = ′ ′= = = = = =

= − −

− = − − −

(3.6.22) 

The set of states 3 3 3 1 3 1 3 3 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

, , , , , , , , , ,− − −  is marked by 

   3 1
2 2

⎡ ⎤ ⎡ ⎤⊕⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, (3.6.23) 

where we have made use of the symbol [ ]j  (see (3.3.20/21)). Here we use the 
symbol ⊕  for the combination of multiplets. Because the function set (3.6.23) 
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results from the direct product of the irreducible representations ( ) ( ){ }1
iΓ J  and 

( )
1
2 iΓ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ⎫
⎨ ⎬
⎩ ⎭

J , one says that it is the direct product or tensor product or Kronecker 

product of the multiplets [ ] 11 and
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 and one writes 

   [ ] 1 3 11
2 2 2

.⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.6.24) 

From (3.6.17) we learn that   

 [ ] [ ]1 1 1 0
2 2

.⎡ ⎤ ⎡ ⎤⊗ ⊕⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3.6.25) 

Many authors use an equals sign instead of  in (3.6.24), which is a questionable 
practice between two sets of states. Equation (3.6.24) says that the functions of 
the set on the right hand side can be calculated with the set on the left using the 
matrix jjS ′  according to (3.6.1). Since jjS ′  is non-singular the transformation can 
be inverted.  

Due to (3.6.21), the general formula for the reduction of the direct product of two 
su(2)-multiplets reads as follows 

   [ ] [ ] [ ] [ ] [ ] [ ]1 1j j j j j j ... | j j | | j j | .′ ′ ′ ′ ′⊗ + ⊕ + − ⊕ ⊕ − + ⊕ −  (3.6.26) 

The right hand side of (3.6.26) is named Clebsch-Gordan series. In analogy to 
(3.6.21) and (3.6.26) every multiplet appears once ( )1jj

Jn ′ = . 

The following considerations support the thesis that 1jj
Jn ′ =  for su(2). The 

matrices in (3.6.21) have the same dimension as ( )jj
iΔ ′ J , (3.5.9), namely 

( ) ( )2 1 2 1j j ′+ + . Due to (3.6.20), if one takes general values j and j', the relation 

   ( ) ( ) ( )2 1 2 1 2 1jj
J

J
j j n J′′+ + = +∑  (3.6.27) 

must hold. With 1jj
Jn ′ =  and with j j ′>  the right hand side of (3.6.27) reads 

   
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 1

2 1 2 1 2 2 1 2 1 2 1

j j

J j j
J j j j j ... j j j j j j

j j j j / j j j j / j j j

′+

′= −

′ ′ ′ ′ ′⎡ ⎤+ = − + − + + + + + + − − − =⎣ ⎦

′ ′ ′ ′ ′ ′⎡ ⎤+ + + − − − − + + = + +⎣ ⎦

∑
  (3.6.28) 

in accordance with the left hand side of (3.6.27). 



 49

3.7  Graphical reduction of direct products of su(2)-
multiplets. 
The multiplet of the irreducible representation ( ) ( ){ }j

iΓ J , which comprises the 

states 1j j , j , j , ... , j , j− −  is denoted by [ ] ( )2 1or 2jj M j+  (see (3.3.20/21)). We 
depict it by 2j+1 points on a line like this: 

 

    .                          

               Figure 3.7.1. Graphical representation of the multiplet [j]. 

 

The function set [ ] [ ]j j ′⊗  of a direct product representation ( ){ }jj
iΔ ′ J  comprises 

( ) ( )2 1 2 1j j ′+ +  function products jm j m′ ′  (see (3.5.8)). We depict the set in 
such a way that we draw first [j ] and then set the multiplet [j' ] repeatedly so that its 
centre appears in every point of [j ], which we delete afterwards. In this way all the 
values M m m′= +  of the set are outlined. For example, the multiplet product 
[ ] [ ]1 3 2/⊗  is made up this way  

 

 

 

 

 

 

I.e., over every point of the [1]-triplet a [3/2]-quadruplet is placed. The value M = 
5/2  appears once, M = 3/2 twice etc . Preserving the number of points and the M-
values we rearrange the points in a symmetric way as multiplets on different 
levels. Instead of figure 3.7.2 we obtain the following arrangement, 

 

 

 

 

 

which has again one M = 5/2 value, two M = 3/2 values, etc. We say that it 
"equals" to the formation of figure 3.7.2, that is 

   [ ] [ ] [ ] [ ] [ ]1 3 2 5 2 3 2 1 2/ / / /⊗ ⊕ ⊕ , (3.7.1) 

[j ] = m

2j+1

M
 -1      0     +1 

[3/2]
[3/2] 

[3/2] 

[1] 

Figure 3.7.2. Direct product of the 
multiplets [1] and [3/2]. 

Figure 3.7.3. Direct sum of the 
multiplets [5/2], [3/2] and [1/2].
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which coincides exactly with (3.6.26). 

The next example deals with [ ] [ ]3 1⊗  in figure 3.7.4. 

 

We read [ ] [ ] [ ] [ ] [ ]3 1 4 3 2 .⊗ ⊕ ⊕  

By this graphical method it is easy to reduce multiple direct products of 
multiplets. For example, in order to form [ ] [ ] [ ]1 2 1 2 1 2/ / /⊗ ⊗  we treat first 

[ ] [ ]1 2 1 2/ /⊗  and then we attach [ ]1 2/  as follows 

                                                                                               

 

 

 

 

 

 

                 Figure 3.7.5. Direct product [ ] [ ] [ ]1/ 2 1/ 2 1/ 2⊗ ⊗ . 

i.e. we have the relation [ ] [ ] [ ] [ ] [ ]1 2 1 2 1 2 3 2 2 1 2/ / / / /⊗ ⊗ ⊕  for the 
fundamental multiplet of su(2). In the standard model of particle physics multiple 
products of fundamental multiplets in su(3) and in su(4) are very important. 

[ ] [ ]1 2 1 2/ /⊗ =  , 

[ ] [ ] [ ]1 2 1 2 1 2/ / /⊗ ⊗  

[3] 

[1] 

 

[2]
[3]

[4] 

Figure 3.7.4. Direct product [ ] [ ]3 1⊗
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4  The Lie algebra su(3) 
In this chapter the basis elements and the generators of the algebra ( )3su  are 
given. The rank two of this algebra is derived from the table of the structure 
constants. The algebra  ( )3su  contains three subalgebras  ( )2su . Their 
complexified variants contain the "third" operators 3 3 3, andT U V , which 
characterize the states of the  ( )3su -multiplets. By means of the corresponding 
step operators, the structure of the multiplets and the pairs of their ordering 
numbers are shown. Specifying the individual states of a multiplet, their multiplicity 
and the dimension of the entire multiplet are found. The smallest  ( )3su -multiplets 
are given graphically. 

The so-called hypercharge is introduced as an eigenvalue and interpreted 
graphically. Starting from a multiplet, an irreducible representation is calculated in 
detail. The quadratic Casimir operator is introduced and its eigenvalue is derived. 

The graphical method for direct products of multiplets is taken from ( )2su , and 
Clebsch-Gordan series are performed. The corresponding technique with Young 
diagrams is explained. 

4.1  The generators of the su(3)-algebra  
The anti-Hermitian 3×3 matrices with vanishing trace constitute the real Lie 
algebra su(3) (see section 2.2). Due to (2.2.9), we write the anti-Hermitian basis 

matrices as 1 i
2i ie λ= − , where the generators iλ  are Hermitian basis matrices. By 

means of (2.1.5),  the matrices iλ  of su(3) can be written this way: 

   

1 2 3

4 5

6 7

0 1 0 0 i 0 1 0 0
1 0 0 i 0 0 0 1 0
0 0 0 0 0 0 0 0 0

0 0 1 0 0 i
0 0 0 0 0 0
1 0 0 i 0 0

0 0 0 0 0 0
0 0 1 0 0 i
0 1 0 0 i 0

, , ,

, ,

, .

λ λ λ

λ λ

λ λ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.1.1) 

For the remaining diagonal λ-matrix we don't choose the form (2.1.6) because it 
does not meet the condition (2.3.3) for all pairs i k,λ λ . Referring to Gell-Mann, 
1964, we use 
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   8

1 0 0
1 0 1 0
3 0 0 2

λ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

. (4.1.2) 

Now the condition ( ) 2 iki kTr λ λ δ= , (2.3.3), is satisfied completely. The matrix 8λ  
is made up as a linear combination of basis elements of the type (2.1.6) like this 

   8

1 0 0 0 0 0
1 20 1 0 0 1 0
3 30 0 0 0 0 1

λ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. (4.1.3) 

The structure constants iklC , which belong to the basis { }ie , (see (2.3.1)), appear 
also in the following commutator relation 

   2ii k ikl l
l

, Cλ λ λ⎡ ⎤ =⎣ ⎦ ∑     (see (2.3.2)). (4.1.4) 

They can be calculated by (2.3.5) or by elementary matrix multiplication and 
reduction. One obtains 

Table 4.1.1. Table of the non-vanishing structure constants of su(3). 
 
    i k l  Cikl 
 
    1 2 3  1 
    1 4 7  1/2 
    1 5 6   -1/2 
    2 4 6  1/2 
    2 5 7  1/2 
    3 4 5  1/2 
    3 6 7   -1/2 
    4 5 8  3 2/  
    6 7 8  3 2/ . 
 

Due to (2.3.6) the structure constants are totally antisymmetric. Therefore, the 
remaining non-vanishing values can be obtained by permuting the indices listed 
above. Table 4.1.1 reveals that the following types of structure constants vanish 

18 28 38 0x x xC C C= = =  with x = 1, 2, .. ,7. That is 

   1 8 2 8 3 8 0, , ,λ λ λ λ λ λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (4.1.5) 

On the other hand table 4.1.1 yields 1 2 1 3 2 30 0 0, , , , ,λ λ λ λ λ λ⎡ ⎤ ⎡ ⎤⎡ ⎤ ≠ ≠ ≠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . That is, 

the matrices 1 2 3 8and , , ,λ λ λ λ don't commute mutually all together. Investigations 

of this kind show that in su(3) there are not more than two s'λ  which commute 
mutually. Therefore one says that the su(3)-algebra has rank 2.  
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For most pairs (i,k) in equation (4.1.4) exists only one l-value. The pairs (4,5) and 
(6,7) result in two summands. 

4.2  Subalgebras of the su(3)-algebra. 

In (2.2.16) we have introduced the operators iλ  by the relation 1 i
2

= −i ie λ . Here 

we deal with the set of the iλ -operators that constitute also a Lie algebra, which is 
isomorphic to the algebra formed by the set { }λ i  of (4.1.1) and (4.1.2). 

In addition, using the λj's, we can make up basis operators of the algebra su(2) 
like this: 

   

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 31 2 3

1 2 36 7 3 8

1 2 34 5 3 8

1 1 1i i i and
2 2 2
1 1 1i i i 3 and
2 2 4
1 1 1i i i 3
2 2 4

T T T

U U U

V V V

, ,

, ,

, , .

λ λ λ

λ λ λ λ

λ λ λ λ

= − = − = −

= − = − = − − +

= − = − = − +

e e e

e e e

e e e

      (4.2.1) 

Using (4.1.4) and table 4.1.1 one proves that for each triple of e-operators the 
relation (3.2.5) 

   ( ) ( ) ( )
1 2 3

X X X,⎡ ⎤ =⎣ ⎦e e e , cyclic in 1,2,3, for X = T, U or V,       (4.2.2) 

is satisfied in accordance with (3.1.2). That is, each triple constitutes a su(2)-
algebra. It is a subalgebra of su(3). 

These subalgebras are not invariant (see section 1.1). We check this for the first 
one like this: 

( ) [ ]1 4 1 4 7 7
1 1 1 1, , 2i .
4 4 2 2

T λ λ λ⎡ ⎤ = − = − ⋅ ⋅ =⎣ ⎦e e e          (4.2.3) 

This element is not a member of the first subalgebra. Therefore, this is not 
invariant. There are no invariant subalgebras in ( )3su  and therefore this algebra 

is simple like every ( )su N -algebra - as mentioned in section 2.2. 

In analogy with (3.3.1), we introduce the following step operators and "third" 
operator 

   ( )1 2 3 3
1 1i and
2 2± = ± =T Tλ λ λ . (4.2.4) 

We obtain from (4.1.4) and table 4.1.1 

   [ ] [ ]3 32, , ,± ± + −= ± =T T T T T T  (4.2.5) 

in accordance with (3.3.3). Defining the operators 
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( ) ( )
( ) ( )

6 7 3 3 8

4 5 3 3 8

1 1i 3
2 4
1 1i 3
2 4

, ,

,

λ λ λ λ

λ λ λ λ

±

±

= ± = − +

= ± = +

U U

V V
 (4.2.6) 

the following commutation relations result, in analogy to (4.2.5) 

   
[ ] [ ]
[ ] [ ]

3 3

3 3

2

2

, , , ,

, , , .
± ± + −

± ± + −

= ± =

= ± =

U U U U U U
V V V V V V

 (4.2.7) 

Among some of the nine operators in (4.2.4) and (4.2.6), the following linear 
dependency exists 

   3 3 3= − +U T V , (4.2.8) 

which we expect because we started with eight 'sλ . The correspondence between 
the commutation relations (4.2.5) and (3.3.3) show that ( )2su -multiplets are 
affiliated to the algebra { }3, ,+ −T T T  (see the end of section 3.3.). This is also true for 
the U - and the V -algebra. In table 4.2.1 the commutator relations of the T-, U- 
and V-operators are put together. 

Table 4.2.1. Commutator relations in su(3). The commutator of an operator in the 
top line with an operator in the column at the right hand side results in the operator 
given in the corresponding field. 
 

T- T3  U+ U- U3  V+ V- V3   
 

-2T3 T+  -V+ 0 -½ T+  0 U- ½T+  T+  
 -T-  0 V- ½ T-  -U+ 0 -½T-  T- 

    ½U+ -½U- 0  -½V+ ½V-  0  T3 
  

 
     -2U3 U+  0 -T- ½U+  U+ 
      -U-   T+ 0 -½U-  U-  
        -½V+ ½V- 0  U3 
 

  32− V      V+    V+ 

     -V-   V- 
 

In the lower triples the relations (4.2.5) and (4.2.7) are visible. The fact that T3, U3 
and V3 commute mutually does not influence the statement that su(3) has rank 2 
(see end of section 4.1) because these operators are linearly dependent (see 
(4.2.8)).     

4.3  Step operators and states in su(3) 
Corresponding to (3.2.19) we can achieve that every state (function) of su(3) is an 
eigenstate of T3. On the other hand, it might be an eigenstate of U3 or V3. 
However, these three operators commute mutually (see section 4.2) and therefore 
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every state is simultaneously eigenstate of T3, U3 and V3 in a certain analogy with 
the relation (3.2.20). Consequently, we can mark a su(3)-state by 

   3 3 3T U V , (4.3.1) 

where 3 3 3, andT U V  are eigenvalues of 3 3 3, andT U V . The inner product 

   
3 3 3 3 3 33 3 3 3 3 3 3 3 T T U U V VT U V T U V T δ δ δ′ ′ ′′ ′ ′ =T   (4.3.2) 

with analogue expressions for U3 and V3 reveals that T3, U3 and V3 can be 
diagonalized simultaneously – a formulation which is often used in this situation. In 
short, we can write 

   
3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

T U V T T U V ,

T U V U T U V ,

T U V V T U V .

=

=

=

T

U

V

 (4.3.3) 

We apply the equation [ ]3 , ± ±= ±T T T , (4.2.5), to (4.3.1), which results in 

      
( )

( )( )
3 3 3 3 3 3 3 3 3 3 3

3 3 3 31

T U V T U V T U V

T T U V ,
± ± ±

±

= ±

= ±

T T T T T

T
 (4.3.4) 

in a certain analogy with (3.3.7). Therefore 3 3 3T U V±T  is an eigenstate of T3 with 
the eigenvalue 3 1T ± . That is, we can expand 

   ( )
3 3

3 3 3 3 3 3 3 3 3 3 31
U V

T U V N T U V U V T ,U V±
′ ′

′ ′ ′ ′= ±∑T . (4.3.5) 

 Due to 

   [ ]3
1
2

, ± ±=U T T∓  (see table 4.2.1) (4.3.6) 

we obtain the relation 

   
( ) ( )

( )
3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3

1 1
2 2

1i.e.
2T V

T U V T U V T U V U T U V

T U V N T U V T V T ,U ,V .

± ± ± ±

±
′′ ′′

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

′′ ′′ ′′ ′′= ∑

U T T U T T

T

∓ ∓

∓
  (4.3.7) 

Analogously, from [ ]3
1
2

, ± ±= ±V T T  (4.3.8) 

we get ( )
3 3

3 3 3 3 3 3 3 3 3 3 3
1
2T U

T U V N T U V T U T ,U ,V .±
′′′ ′′′

′′′ ′′′ ′′′ ′′′= ±∑T  (4.3.9) 
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That is to say, acting on 3 3 3T U V  the operator ±T  generates a state with quantum 

numbers 3 3 3
1 11 and
2 2

T ,U V± ±∓ . We write 

   3 3 3 3 3 3
1 11
2 2

T U V T ,U ,V± → ± ±T ∓ . (4.3.10)  

This behaviour is realized 
graphically in figure 4.3.1 by 
drawing an axis for the T-
subalgebra analogously to 
figure 3.7.1, an axis for the 
U- and an other for the V-
subalgebra. Their directions 
differ by 600. Assuming the 
coordinates T3, U3 and V3 for 
state 1  the operator T+ 

creates the state 1 2T+ =  
(definition) on the T-line with 
the coordinate T3+1. Its U-
coordinate is found by 
dropping a perpendicular on 
the U-line resulting in U3 – ½ 

and on the V-line yielding V3 + ½ in accordance with (4.3.10). The action of T- can 
be read in the same way from figure 4.3.1. 

Analogously to (4.3.10) the following relations 
are derived 

3 3 3 3 3 3

3 3 3 3 3 3

1 11
2 2
1 1 1
2 2

T U V T ,U ,V ,

T U V T ,U ,V .

±

±

→ ± ±

→ ± ± ±

U

V

∓
         

(4.3.11)

In figure 4.3.2 the first relation of (4.3.11) is 
reproduced correctly, because the state 

1 4U+ =  (definition) shows U3+1 and the 
components V3+½ and T3-½. The second 
expression in (4.3.11) becomes apparent in an 
analogue graphical scheme. 

 

 

  

 

T- 
line

V- 
line 

U- 
line 

1  
T3,U3,V3 

23  

V3+½ U3+½   

U3-½ V3-½   

2  
T3+1

3  
T3-1 

600  
600  

Figure 4.3.1. T-, U- and V-lines. Representation 
of the U- and V-components of states lying on 
the T-axis. 

U-line 

4  
U3+1 

V-line 

T-line 
   1  
T3U3V

V3+½  

T3-½  

Figure 4.3.2. 
Representation of the T- 
and V-component of a 
state lying on the U-axis  

T-line

V-line U-line

Figure 4.3.3. "Anti"-
coordinate system of su(3) 
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Of course the "anti"-coordinate system of figure 4.3.3 with reversed T-, U- and V-
lines represents the relations (4.3.10) and (4.3.11) in the same way. In sections 
4.8 and 4.10 we will refer to it. 

 

4.4  Multiplets of su(3) 
Repeated applications of the operators 

and ,± ± ±T U V  generate a lattice of states, which are 
shown in figure 4.4.1 as points in a triangular 
formation. 

 

  

 

 

 

We demand that su(3)-multiplets are finite. We 
start from the state with the highest T3-value, which 
we name T3,max or maximal weight. Its state is 
marked with maxψ  (see figure 4.4.2) and it must 
meet the relation 0maxψ+ =T . Due to the hexagonal (or triangular) structure of the 
point lattice, the statements 

   0max maxψ ψ− += =U V  (4.4.1) 

are true as well. 

Now we move on 1n ≥  steps from the state of maximal 
weight in the V-line and reach point A, where the state 

( )n
A maxψ ψ−= V  exists (in figure 4.4.3 n = 2 is chosen). If 

we would assume that the boundary of the multiplet is 
concave in A and if there would be one step up to the point 
B, the following relation would hold 

( ) ( ) 0n n
B A max maxψ ψ ψ ψ− − − − −= = = =U U V V U ,          (4.4.2) 

where we have made use of [ ] 0,− − =U V , (table 4.2.1), and 
of (4.4.1). Therefore the state B and the concave corner in 
A don't exist. In the same way one shows that 

The su(3)-multiplet is convex everywhere 
in the T-U-V-plane.                                                   (4.4.3) 

Figure 4.4.1. Lattice of 
su(3)-states. 

maxψ

Figure 4.4.2. Maximal weight 
of the su(3)-multiplet. 

maxψ

A 

B ? 

Figure 4.4.3. 
Hypothesis of a 
concave boundary
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We refer to figure 4.4.4, where a part of a su(3)-multiplet is outlined. The point 
chain between M and N represents a su(2)-multiplet in V-direction (according to 
figure 3.7.1), which has a natural symmetry. Correspondingly, the neighboring 
points of M must have a symmetrical counterpart in the neighborhood of N. That 
is, the su(2)-multiplet N' – M' is also symmetric with respect to the perpendicular s. 
This is true for the other V-multiplets (the N" - M"-multiplet for instance). 
Therefore, the U-line MM" has the same length as the T-line NN". 

 

 

 

 

 

 

 

 

 

 

 

Now we start from the symmetry of the U-multiplet MM" (see figure 4.4.5). The 
remaining parallel submultiplets must also be symmetric respective the 

M"

M'

M

s

N
N'N" 

Figure 4.4.4. Part of a su(3)-
multiplet. 

M" 
s' 

M 

Figure 4.4.5. Second 
symmetry axis of the 
su(3)-multiplet 

s' 
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perpendicular s'. In this way the area of the su(3)-multiplet is closed to a partially 
regular hexagon with three symmetry axes including angles of 600 (see figure 
4.4.6). 

p+1 is the total number of state points on the V-
line going through the point with maximal 
weight, and q+1 is the analogue number for the 
corresponding U-line. The integers p and q 
characterize the su(3)-multiplet completely. It is 
marked by M(p,q). Thus, in figure 4.4.6 we have 
the su(3)-multiplet M(3,2). 

 

 

 

 

 

4.5  Individual states of the su(3)-multiplet and their 
multiplicities. 
First we try to characterize the state on point M carrying the maximal weight (see 
figure 4.4.5). The submultiplet on the V-line going through M has p + 1 states. 
Because it is a su(2)-multiplet we can write 

                                                       1 2 1Vp j+ = + . (4.5.1) 

The point M is a furthest member of this multiplet. Its magnetic quantum number is 
therefore V ,max Vm j=  and the state can be described by 

   
2 2V V ,max

V

p pM j ,m ,= = . (4.5.2) 

On the other hand, the state M  is part of a 
U-multiplet. Accordingly, 

   
2 2 U

q qM ,= −                                  

(4.5.3)

holds. Because M is in the largest T-
multiplet (see figure 4.5.1) and shows 

2 2T T ,max
p qj m= + =  we can write 

Figure 4.4.6. Ordering 
numbers of the su(3)-
multiplets. 

q 

p 

600 

600 

p/2 q/2 

(p+q)/2 

M

Figure 4.5.1. The largest 
T-multiplet. 
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2 2 T

p q p qM ,+ +
= .                      (4.5.4) 

In (4.5.2) up to (4.5.4) the relative phases +1 have been chosen. The state M  is 
called unique because it can be described by one expression of the T-, U- or V-
type. 

  

 

 

 

 

 

 

 

 

 

 

We claim that the neighboring state A  (see figure 4.5.2) is also unique. It lies at 
the end of a V-multiplet with p+2 states and is described by 

   1 1
2 2 V

p pA ,+ +
=                  (4.5.5)  

and from the corresponding T-multiplet we learn 

   1 1
2 2 T

p q p qA ,+ − + −
= .     (4.5.6)  

We define: a state is unique if it is represented at least in one subalgebra (T-, U- 
or V) by a single expression. In the U-subalgebra for A  the states  

    1
2 2 U

q q,− + and (4.5.7) 

    1 1
2 2 U

q q,− − +  (4.5.8) 

are possible. But we know already that A  is unique, for which reason we drop 
the last expression (4.5.8). In the same way one proves that all the states on the 
boundary of a su(3)-multiplet are unique. 

Figure 4.5.2. Submultiplets of a 
boundary state. 

A

M
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Now we deal with the state N  in figure 4.5.3 and claim that it is doubly occupied. 
Double occupation denotes that of the three descriptions of states (in the T-
multiplet, in the U-multiplet and in the V-multiplet) one is composed out of a pair of 
orthonormalized su(2)-states. Similarly to (4.5.7/8) the U-expressions 

   1 1 1 1
2 2 2 2U U

q q q q, , ,+ − − −
− −    (4.5.9)  

can be assigned to N , or, in other words, the state N  can be written as a linear 
combination of these orthogonal expressions. Analogously 

2 2 2 and
2 2 2 2

1 1 1 1
2 2 2 2

T T

V V

p q p q p q p q, , ,

p p p p, , ,

+ + − + − + −

+ − − −
 (4.5.10) 

belong to N . Obviously, N  is doubly occupied. The pairs of expressions in 
(4.5.9) and (4.5.10) are equivalent in such a way that the members of one pair, 
say the T-pair, can be expressed linearly by the members of an other pair, say the 
U-pair. We carry it out this way 

   
1 2

2 1

2 1 1 1 1
2 2 2 2 2 2

2 2 1 1 1 1
2 2 2 2 2 2

T U U

T U U

p q p q q q q q, a , a ,

p q p q q q q q, a , a , .

+ + − + − − −
= − + −

+ − + − + − − −
= − − −

 (4.5.11) 

In the second equation the coefficients a2 and –a1 have been chosen in order to 
make both lines of (4.5.11) orthogonal to each other, which we see like this 

   2 1 1 2
2 2 20 0

2 2 2 2 T

p q p q p q p q, , a a a a .+ − + − + + −
= = − =  

Figure 4.5.3. A state on the inner 
shell. 

M 

A 

B 

N

P
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Analogously to (4.5.11) the following relations hold 

      
1 2

2 1

2 1 1 1 1
2 2 2 2 2 2

2 2 1 1 1 1
2 2 2 2 2 2

T V V

T V V

p q p q p p p p, b , b ,

p q p q p p p p, b , b , .

+ + − + − − −
= +

+ − + − + − − −
= −

 (4.5.12) 

In order to determine the coefficients ai and bi in (4.5.11) and (4.5.12) we make 
use of the relation 0+ − − + −− − =U V V U T  (see table 4.2.1), apply this null-operator 
on the state M  and insert the expressions (4.5.2), (4.5.3) or (4.5.4) this way 

    
( )0

2 2 2 2 2 2V U T

M

p p q q p q p q, , .

+ − − + −

+ − − + −

= − −

+ +
= − − −

U V V U T

U V V U T
 (4.5.13) 

The su(2) step operators act according to (3.3.25) and (3.3.26) (remember, the 
commutator relations for the operators 3, ,+ −J J J , (3.3.3), are identical to these 
relations for 3, ,+ −T T T , (4.2.5), and for  3, ,+ −V V V  and 3, ,+ −U U U , (4.2.7)). We obtain 

( ) ( )

2 2 2 20
2 2 2 2 2 2 2 2

2 2 2
2 2 2 2 2 2

1 3 1 1 1 1
2 2 2 2 2 2

1 3 1 1 1 1 2
2 2 2 2 2 2 2 2

1 1 1 11 1
2 2 2 2

2
2 2

T

U

V T

U V

p p p p q q q qB A

p q p q p q p q p q p q,

q q q q q qp ,

p p p p p p p q p qq , p q ,

q q p pp q , q p ,

p q p qp q ,

+ −
+ − + −

= ⋅ − ⋅ − ⋅ − ⋅

+ + + + + − + + −
− ⋅ − ⋅ =

+ + + − + −
⋅ − ⋅ −

+ + + − + − + + −
− ⋅ − ⋅ − + =

+ − + −
+ − − +

+ + −
− +

U V

T

,

(4.5.14) 

where we have used the relations (4.5.5), (4.5.8) and 
1 1 1 1 2

2 2 2 2 2 2T U V

p q p q q q p pB , , ,+ + + − + + −
= = − = (Note: here the states 

A , B  on the boundary are not normalized in the same way as in sections 4.3 
and 4.4). We now form the inner product of (4.5.14) with the bra state 

2
2 2T

p q p q,+ + −  i.e. 
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( )

( )

2 1 11
2 2 2 2

2 1 11
2 2 2 2

2 2 0
2 2 2 2

T
U

T
V

T
T

p q p q q qp q , ,

p q p q p pq p , ,

p q p q p q p qp q , , .

+ + − + −
+ −

+ + − + −
− + −

+ + − + + −
+ =

 (4.5.15) 

We insert (4.5.11) and (4.5.12) and make use of the orthonormality of the su(2)-
states: 

   

( )

( )

1

1

1 1 1 11
2 2 2 2

1 1 1 11
2 2 2 2

2 2 0 That is
2 2 2 2

U
U

V
V

T
T

q q q qa p q , ,

p p p pb q p , ,

p q p q p q p qp q , , .

+ − + −
+ − −

+ − + −
− +

+ + − + + −
− + =

 (4.5.16) 

      ( ) ( )1 11 1 0a p q b q p p q .+ − + − + =  (4.5.17) 

Analogously, we make up the inner product of (4.5.14) with 2 2
2 2T

p q p q,+ − + −  

and get 

   ( ) ( )2 21 1 0a p q b q p+ − + = . (4.5.18) 

We bring the terms with bi on the left-hand side, square and get from (4.5.17) and 
(4.5.18) 

   
( ) ( ) ( ) ( )
( ) ( )

2 2
1 1 1

2 2
2 2

1 1 2 1

1 1

b q p a p q a p q p q p q

b q p a p q .

+ = + − + + + +

+ = +
 (4.5.19) 

Making use of 2 2 2 2
1 2 1 2 1a a b b+ = + =  we obtain 

   
( ) ( )

( )
( ) ( )

2
1 2 11

1 1
q p q qpa , a a

q p q q p q
+ +

= = + − =
+ + + +

. (4.5.20) 

Analogously, the equations (4.5.17) and (4.5.18) yield 

   
( ) ( )

( )
( ) ( )1 21 1
q p q pqb , b

q p q q p q
+ +

= − =
+ + + +

. (4.5.21) 

For a2 and b2 positive square roots are chosen.  

The states on the V-line between N and P in figure 4.5.3 contain more than two V-
expressions. But since there are only two U- and T-expressions these states are 
said to be doubly occupied in analogy to the uniqueness of boundary states. 
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Thus, the states of the first inner shell 
(next to the boundary shell) are 
doubly occupied. The following shell 
is triply occupied – provided that the 
preceding is hexagonal -  and so on. 

According to figure 4.5.4 from the 
boundary one reaches a triangular 
shell after q steps , (q<p). Each state 
on a face of the triangle has the 
multiplicity q+1. 

 

 

 

 

  

 

 

 

 

We will show that from now on the multiplicity is not raised passing inward, i.e. all 
triangular shells have the same multiplicity. We deal with this situation starting with 
a su(3)-multiplet with a triangular boundary (q = 0). For the states and BM , A , 
figure 4.5.5, we write 

  

0 0
2 2 2 2

2 1 1
2 2 2 2

1 1 2
2 2 2 2

U
T V

T V

T V

p p p pM , , , ,

p p p pA , , ,

p p p pB , , .

= = =

− − −
= =

− − −
= =

 (4.5.22) 

The states A  and B  lie on a U-line and are unique. Therefore the additional V- 
and T-states are omitted. Due to table 4.2.1 the operator relation 

− − − −=T V V T holds, which we apply on M  using (3.3.25) and (3.3.26) 

q

p

Figure 4.5.4. Hexagonal and 
triangular inner shells. 

M

B 

A 

N 

Figure 4.5.5. Part of a 
triangular multiplet. 
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( ) ( )

( ) ( )

( )
( )

( )
( )

2 2 2 2
2 2

2 2 2 2

1 1 1 1
2 2 2 2

1 3 1 31 1
2 2 2 2

T V V T

T V

T V

V T

V , B T , A

T , B V , A

T , N V , N

p p p p, ,

p p p pp , p ,

p p p pp , p ,

p p p pp p , p p , .

− − − −

− −

− −

=

− −
=

− − − −
=

− − − −
− = −

 (4.5.23) 

If the state N  would have double multiplicity analogously to (4.5.11) the relation 

   
( ) ( ) ( )

1 2
1 3 1 3 3 3

2 2 2 2 2 2T N V N V N

p p p p p p, a , a ,− − − − − −
= +   (4.5.24) 

would be true. We replace the left-hand state by means of (4.5.23) and obtain 

   ( )
( ) ( )

1 2
1 3 3 31

2 2 2 2V N V N

p p p pa , a , .− − − −
− =  (4.5.25) 

But these orthogonal states cannot be proportional to one another. That is why the 
assumption of double multiplicity of N  is wrong and N  is unique like M . As in 
the hexagonal case the whole inner shell has uniform multiplicity. In the same way, 
one shows that all states in the triangle have multiplicity one. Analogously, if the 
multiplet has q > 0, the multiplicity of the inner triangle is uniformly q + 1. 

 

 

 

 

 

 

  

 

 

 

We sum up these results by a simple recipe. Starting from a vertex of a shell we 
move inward on so-called "short paths" consisting of one or two unity steps. If 
there are two symmetric paths (for instance a,b and a',b' in figure 4.5.6) the 
multiplicity is not raised. If there are two asymmetric "short paths" (for example c 
and de in figure 4.5.6) the multiplicity is increased by 1. 

c

Figure 4.5.6."short paths" in 
su(3)-multiplets. 

a'
a

b

b'
de
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In figure 4.5.7 the additional (more than one) multiplicities are drawn as circles. 

4.6  Dimension of the su(3)-multiplet. 
The sum of all multiplicities of all lattice points is named dimension d of the 
multiplet. Figure 4.5.7 shows that the boundary shell has 3(p + q) states. The next 
inner shell contains 3(p – 1 + q - 1) doubly occupied points, which yields 

( )2 3 2p q⋅ + −  partial states. On the nth inner shell (counted inward) are 

( ) ( )1 3 2n p q n+ ⋅ + −  partial states. For q p≤  we limit the index n at q – 1. This 
value marks the last hexagonal shell. It has the multiplicity q. The shells with 
0 1n q≤ ≤ −  contain together 

   ( ) ( ) ( ) ( )
1 1 1

2

0 0 0
1 3 2 3 2 3 2 3

q q q

n n n
n p q n n p q n p q q

− − −

= = =

+ + − = − ⋅ + + − + +∑ ∑ ∑  (4.6.1) 

partial states. Still, we have to take into account an inner triangular or singular 
area of the multiplet with multiplicity 1q + . Starting with the lowest point in the 
triangle in figure 4.6.1, we count 

   ( ) ( )
1

1

1 1 2
2

p q

m
m p q p q

− +

=

= − + − +∑  (4.6.2) 

lattice points. The dimension d of the multiplet amounts to 

    
( ) ( )( )( )

( ) ( )
1 1

2

0 0

1 1 2 1
2

6 3 2 3
q q

n n

d p,q p q p q q

n p q n p q q.
− −

= =

= − + − + +

− + + − + +∑ ∑
 (4.6.3)  

Figure 4.5.7.Multiplicities of the 
multiplet M(p,q). 

p 

q 
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Making use of ( ) ( )
1

2

0
1 2 1

6

q

n

qn q q
−

=

= − −∑  and ( )
1

0
1

2

q

n

qn q
−

=

= −∑  finally we obtain 

   ( ) ( ) ( ) ( )1 1 1 2
2

d p,q p q p q= + + + + . 

                                                 (4.6.4) 

The dimension d is symmetric in p and 
q, which follows also from the fact that 
interchanging both parameters turns the 
multiplet diagram by 600. 

For the simplest multiplets the 
dimensions are given in table 4.6.1, 
which is calculated by means of (4.6.4). 

 
 
 

Table 4.6.1. Dimensions of the lowest su(3)-multiplets. 
 
   p q d(p,q)   p q d(p,q) 
 
   0 0 1   3 0 10 

1 0 3   3 1 32 
1 1 8   3 2 42 

   2 0 6   3 3 64 
   2 1 15 
   2 2 27  
 

On this occasion we acquaint ourselves with the 
mathematical-geometrical method of Young tableaux. Such 
a tableau consists of rows of boxes. Every lower row is as 
long or shorter than the upper one. Integers from 1 up to a 
maximum are put – repetitions are permitted - in the boxes in 
such a way that to the right the values do not decrease and 
downward in a column they increase. This scheme is named 
standard arrangement.  

  

 

For su(3)-multiplets we draw two lines of boxes. The number of 
boxes in the first line which jut out the second line is chosen to be 
p and the second line has q boxes. The integers 1, 2 and 3 are 
available to be put in, eventually repeatedly. 

A theorem, which we do not prove, is that the number d of 
standard arrangements of this Young tableau is equal to the 

q

Figure 4.6.1.The triangular 
area. 

q p-q+1 

p+q+1 

p-q+1 

Figure 4.6.2. 
Young diagram. 

q=2 

p=1

Figure 4.6.3. 
A su(3)-Young 
diagram 
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dimension of the multiplet M(p,q). We write down the arrangements for p = 1 and q 
= 2 (corresponding to figure 4.6.3) 

1 1 1 1 1 2 1 1 3 1 2 2 1 2 3 2 2 2 2 2 3
2 2 2 2 2 2 2 3 2 3 3 3 3 3

1 1 1 1 1 2 1 1 3 1 2 2 1 2 3
2 3 2 3 2 3 3 3 3 3

1 1 1 1 1 2 1 1 3
3 3 3 3 3 3
 

One counts 15 arrangements. According to the given theorem the dimension 
d(1,2) is 15, which is in agreement with table 4.6.1. In sections 4.14, 5.5 and 6.2 
we again will find Young tableaux. 

4.7  The smallest su(3)-multiplets. 
We show the simplest su(3)-multiplets ( ) with 3dM p,q p,q ≤ . In this symbol the 
dimension is put as a subscript character. The coordinate axes are placed in the 
centre of gravity in every figure. The numerical details on the y-axis (integers or 
thirds) will be looked at in section 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1(0,0) M3(1,0) M3(0,1)-2/3 

2/3 

2/3 

-2/3 

-4/3 

4/3 

M8(1,1) M6(2,0) M6(0,2)

4/3 

-2/3 

-2 

2 

M15(2,1) M27(2,2) 



 69

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8  The fundamental multiplet of su(3). 
The operators λj of su(3) are introduced at the beginning of section 4.2. If they act 
on a function of the fundamental multiplet { }1 2 3, ,ψ ψ ψ , according to (2.2.13) and 

(2.2.16) they meet λj ( )
3

1
k j llk

l
ψ λ ψ

=

= ∑  and taking into account (4.2.4) the following 

relations hold 

( ) ( ) ( )

( ) ( )

3

1 2 1 2 3 1 21 2
1

3

1 2 3 2 11 2
1

0 1 0
1 1i i 0 0 0
2 2

0 0 0

0 0 0
1 - i 1 0 0
2

0 0 0

k k l klk
l

k

k l klk
l

k

, , ,

, ,

ψ λ λ ψ λ λ ψ ψ ψ ψ ψ δ

ψ λ λ ψ ψ ψ ψ ψ δ

+
=

−
=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + = + = =⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= = =⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

T

T

 (4.8.1) 

-4/3 

2/3 

-2 M10(3,0) M32(3,1) 

M42(3,2) 

4/3 

-2/3 

-2 

2 

M64(3,3) 

Figure 4.7.1.The simplest su(3)-multiplets. 
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and so forth. We have inserted the matrices iλ  from (4.1.1) and (4.1.2). The 
results read 

   

2 1 1 2 3 1 1 3 2 2

3 2 2 3 3 2 2 3 3 3

3 1 1 3 3 1 1 3 3 3

1 1
2 2
1 1
2 2
1 1
2 2

, , , ,

, , , ,

, , , .

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

+ −

+ −

+ −

= = = = −

= = = = −

= = = = −

T T T T

U U U U

V V V V

 (4.8.2) 

Other applications of these operators on these 
functions yield zero. We maintain that the 
fundamental multiplet { }1 2 3, ,ψ ψ ψ  is identical 
with M3(1,0) if the following assignment are 
chosen (see figure 4.8.1) 

 

 

 

        

1

2

3

1 1 1 10 0
2 2 2 2

1 1 1 1 0 0
2 2 2 2

1 1 1 10 0
2 2 2 2

U
T V

V
T U

T
U V

, , , ,

, , , ,

, , , .

ψ

ψ

ψ

= = =

= − = =

= = − = −

 (4.8.3) 

The su(2)-operators T+ , T- , T3  and the operators U+ , U- , U3 and V+ , V- , V3 act 
fully equivalent to the operators J+ , J- , J3 , (3.3.1) (see the comment preceding 
equations (4.5.14)). Therefore, we can use the relations (3.3.20) and (3.3.27) in 
order to recalculate the expressions (4.8.2). The results agree entirely with (4.8.2). 

The multiplet M3(0,1) of figure 4.8.2 is 
also a fundamental multiplet. The T-, U- 
and V-lines are reversed (see the remark 
at the end of section 4.3). In this way, the 
relations (4.8.3) and (4.8.2) are also 
satisfied. 

In particle physics the multiplet M3(1,0) is 
denoted by [3] and describes the quark 
states whereas ( )3 0 1 3M , ⎡ ⎤≡ ⎣ ⎦  stands for 

the antiquark states. 

3ψ  

1ψ2ψ  T-line 

V-line U-line 

1ψ

Figure 4.8.1. The 
fundamental su(3)-multiplet 

3ψ  

1ψ  
2ψ  T-line 

V-line U-line

Figure 4.8.2. The fundamental 
antimultiplet. 
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4.9  The hypercharge Y. 
In order to specify the status of a su(3)-multiplet we used the T3-, U3- and V3-
values in a star-shaped coordinate system. Of course two coordinates are 
sufficient for a two-dimensional system. In practice the T-axis and a perpendicular 
Y-axis are taken. In particle physics the Y-values are named hypercharge. We 
claim that the coordinate Y is the eigenvalue of the operator 

   ( ) ( ) ( )8 3 3 3 3 3 3
1 2 2 22 2

3 3 33
λ= = + = + = −Y U V U T V T . (4.9.1) 

Here the relations (4.2.6) and (4.2.8) have been applied. From (4.9.1) and table 
4.2.1 follows 

   [ ] [ ] [ ]3 3 3 0Y T Y U Y V, , ,= = = . (4.9.2) 

Therefore the state 3 3 3T U V  is also eigenstate of the operator Y  i.e. 

   3 3 3 3 3 3 3 3 3 3andT U V Y T U V T U V T Y= ≡Y . (4.9.3) 

By means of table 4.2.1 we can write 

   
[ ] [ ] [ ] ( )

( ) ( )
3 3

3 3 3

2 2 2 0 and
3 3 3

, , ,

T Y T Y Y T Y .

± ± ± ± ±

± ± ±

= + = ± =

= =

Y T U T V T T T

Y T T Y T

∓
 (4.9.4) 

That is, the state 3T Y±T ,which differs in T3
 by 1±  from the state 3T Y , has the 

same Y as 3T Y . This corroborates that the Y-axis is orthogonal to the T-line. 

Similarly one derives [ ], ± ±= ±Y U U  which yields  

( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 31 1Y U U Y U U U U VT Y T Y T Y Y T Y Y T .± ± ± ± ±= ± = ± ≡ ±  (4.9.5) 

This means that ±U  not only rises and lowers 
U3 by 1 but also Y in the same sense. 
Analogously one shows that Y varies alike to 
V3. Figure 4.9.1 shows this behaviour. Points 
1 and 2 have both the distance 1 from 3. On 
the other hand, the distance (Y-value) of 3 
from the T-line is also 1, which is 
geometrically impossible. We circumvent the 
inconsistency by taking the Y-values in units 
of 3 2/ . The geometrical Y-distance 3 2/       
is interpreted as a  
formal value "1". 

  

We now determine the Y-values of the states of two small 
multiplets and of their coordinate origins. In the multiplet 

T-line 

V-line U-line 

Figure 4.9.1. Step 1 in the 
directions U, V and Y 

1  2  

3  

1    1 "1"= 3 2/  

Figure 4.9.1a. 
The multiplet 
M3(1,0). 

1  

3  

2
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M3(1,0), (figure 4.9.1a), the state 1  according to (4.8.3) is written as 
1 11 0 0
2 2U

T

, ,= = . We apply the operator Y, according to (4.9.1), to this state: 

3 3
4 2 1 1 1 1 1 11 0 0 1
3 3 2 2 3 2 2 3U

T T

, , ,= + = =Y U T . The eigenvalue of the Y-

operator is 1/3  in 1 , which holds also for 2 . For 1 13 0 0
2 2 T

U

, ,= − =  we 

obtain 

3 3
4 1 1 2 2 1 13 0 0
3 2 2 3 3 2 2

Y U T
T

U U

, , ,= − + = −  

2 3
3

= −  as indicated in figure 4.7.1. Clearly the 

origin of the coordinate system is 1/3 below the T-
line and the height of the triangle amounts to "1". 

In the multiplet M10(0,3) we have 
3 31 0 0
2 2 V

U

, ,= − =  and 3
2 3 31
3 2 2 U

,= −Y U  

3
2 3 30 0 1 1 1
3 2 2V

U

, ,+ = − − = −V . Therefore the origin lies one unit above the 

mesh point 1 . 

Obviously the origin of the TY-coordinate system 
lies on the intersection point of the symmetry 
axes s and s' (see figure 4.9.3), because there 
the eigenvalues U3 and V3 vanish i.e. 

 ( )3 3 3 3 3 3 3 3
2 0
3

T U V U V T U V= + =Y .           (4.9.6) 

The value Y' in figure 4.9.3 is for planimetric 
reasons (origin = center of gravity of the figure) 

( )1 3 32
3 2 2 3

p qY ' p q q −⎛ ⎞= ⋅ + = +⎜ ⎟
⎝ ⎠

.         (4.9.7)   

Since p and q are integers the expression 
3

p q−  

amount to an integer number plus 0, 1/3 or 2/3. 
Therefore, the points on top of the multiplet can 
have the Y-coordinates integer, integer + 1/3 or 
integer + 2/3 (measured in units of 3 2/ ). This 
is true for all the states of the multiplet because 
they differ by integers in Y. One says that the 
multiplet has the  

1

Figure 4.9.2. The 
multiplet M10(0,3) 

s' s' 

s 

T 

Y 

q 

p 

q 

T 

Y 

Y' 

Figure 4.9.3. Coordinate 
system TY. 
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   triality 
3
τ  (τ = 0, 1, 2)                                 (4.9.8)  

if its coordinates are (integer + 
3
τ ). 

4.10  Irreducible representations of the su(3) algebra. 
Due to (3.2.12) and (1.4.3) we have 

   ( ) ( )
1 1

1 i
2

d d

i k i l i llk lk
l l

ψ Γ ψ Γ ψ
= =

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

∑ ∑e e λ . (4.10.1) 

Therefore, the matrices ( )1 i
2 iΓ− λ  are a representation of the Lie algebra ( )3su . 

Equation (4.10.1) can be written as 

    ( )
1

d

i k i llk
l

ψ Γ ψ
=

= ∑λ λ . 

According to (1.3.6) the matrix elements of ( )iΓ λ  read  

   ( ) ( ) ( ) ( )p,q p,q p,q
i m i kmk .Γ ψ ψ=λ λ  (4.10.2) 

By means of (4.2.4) and (4.2.6) we can write the operators λi this way 

   
( )
( )

( ) ( )

1 2 3 3

4 5

6 7 8 3 3

i 2
i

2i
3

, , ,
, ,

, , .

+ − + −

+ − + −

+ − + −

= + = − − =
= + = − −

= + = − − = +

T T T T T
V V V V

U U U U U V

λ λ λ
λ λ

λ λ λ

 

                                                                             (4.10.3)

For the moment, we don't make use of the operator Y. 
Given a su(3)-multiplet, the matrix elements (4.10.2) can 
be calculated using the su(2)-rules (3.3.20), (3.3.25) and 
(3.3.26) for the T-, U- and V-operators. 

 

 For example we determine the su(3) representation of the multiplet M6(2,0) 
(figure 4.10.1). The states 1 2 6, ,..,  are characterized by the following 

3 3 3and,T U V  values 

1  
2  

3  

5  

6  

4

Figure 4.10.1. 
Multiplet M6(2,0). 
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3 3 3state

1 1 0 1
2 0 1 2 1 2
3 1 1 0
4 1 2 1 2 0
5 1 2 0 1 2
6 0 1 1

T U V

/ /

/ /
/ /

.

−
−

− −
− −

 

If the operators or,± ± ±T U V  act on triplet su(2)-states a factor 2  appears 
according to (3.3.27) and doublet states have only the factor 1. We obtain 

                     

3

3

3

3

1 2 2 1 1

2 2 1 2 2 3

3 2 2 3 3
14 5 4 4
2
15 4 5 5
2

T T
T T
T T

T T

T T

, ,

, ,

, ,

, ,

, .

−

+ −

+

−

+

= =

= =

= = −

= =

= = −

 (4.10.4) 

The remaining expressions with T-operators vanish. For the U- and the V-
operators analogous relations hold. Therefore due to (4.10.2) and (4.10.3), for p = 
2 and q = 0 we have for example 

   ( ) ( )2 0
1

,
m k m kmk ,Γ ψ ψ ψ ψ+ −= +T Tλ  (4.10.5) 

which yields for m = 1 and k = 2 

   ( ) ( )2 0
1 1 2 2 0,

, .Γ = +λ  (4.10.6) 

With the rest of the matrix elements and of the operators λi one has to proceed 
similarly and obtains the 6 6× -matrices ( )( )2 0,

iΓ λ  representing su(3) like this   

 



 75

( )( ) ( )( )

( )( ) ( )( )

2 0 2 0
1 2

2 0 2 0
3 4

0 2 0 0 2 0

2 0 2 0 2 0 2 0

0 2 0 0 2 0i
0 1 0 0 1 0

0 1 0 0 0 1 0 0
0 0 0 0 0 0

2 0 02 0 0
0 0 1 00 0 0 0

0 0 00 0 2
1 0 0 2 0 0 0 0 2

0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 2 0 0

, ,

, ,

, ,

,

λ λ

λ λ

Γ Γ

Γ Γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− ⎜ ⎟= =⎜ ⎟
⎜ ⎟⎜ ⎟
⎜⎜ ⎟− ⎜⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

,

⎟
⎟
⎟

 

 (4.10.7) 

( )( ) ( )( )

( )( ) ( )( )

2 0 2 0
5 6

2 0 2 0
7 8

0 0 02 0 0
0 1 0 00 0 1 0

0 0 0 0 2 0
i

0 1 0 0 0 02 0 0 0 0 2
0 1 0 0 0 0 0 0 2 0 0 2

0 0 0 2 0 0 0 0 0 0 2 0
1 0 0

0 0 0 0 1 0 0
0 1 0 0 0 0 1

0 2 0 1i 0 00 1 0 0 0 0 2
0 0 2 0 0 2 0 0
0 0 0 0 2 0

, ,

, ,

, ,

,

λ λ

λ λ

Γ Γ

Γ Γ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟= = −
⎜ ⎟
⎜ ⎟−⎜ ⎟ −
⎜ ⎟
⎝ ⎠

1 0
2

0 0 2

.

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

By numerical calculation one makes sure that the relation 

   ( )( ) ( )( ) ( )( )2 02 0 2 02i
,, ,

i j ijk k, CΓ Γ Γ⎡ ⎤ =⎢ ⎥⎣ ⎦
λ λ λ  (4.10.8) 

is satisfied, which we expect from considerations in section 1.4 and from equation 
(2.3.2). The Cijk's are given in table 4.1.1. 

If one works on the simple "quark" multiplet M3(1,0), proceeding in the same way 
one produces a representation of su(3) with 3 3× -matrices. If the state numbers 
and the coordinate system are chosen as in figure 4.8.1, the numerical calculation 
reveals that the representation matrices ( )( )1 0,

iλΓ  coincide with the corresponding 
matrices iλ , which is a trivial consequence of the definition (2.2.13). 
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In order to obtain a representation from the "antiquark"-multiplet M3(0,1) we have 
to take the "anti" coordinate system of figure 4.3.3 or of figure 4.8.2. The resulting 
matrices ( )( )0 1,

iλΓ  coincide again with iλ . 

4.11  Casimir operators. 
In the su(2)-algebra the operator J 2 plays an important rôle. On the one hand it 
commutes with the elements 3, ,+ −J J J  (see (3.3.3)) and therefore with 1 2 3, ,e e e  
i.e. with all elements of su(2), and, on the other hand, the functions of the su(2)-
multiplets are eigenfunctions of 2J  according to (3.3.19). The eigenvalue has the 
form ( )1j j + , which contains the integer or half integer quantum number j. It is 
characteristic for the multiplet in question. 

Operators which commute with all elements ie  of a Lie algebra are named Casimir 

operators. Because of 1 i
2i i= −e λ , they commute also with the generators iλ . 

Generally, one can show that the states of a multiplet accompanying the algebra 
are eigenfunctions of the Casimir operator and have a uniform eigenvalue (part of 
the theorem of Racah). Furthermore it can be proven that the number of Casimir 
operators attributed to a Lie algebra is identical with the rank l of the algebra (see 
at the end of section 4.1). Generally it can be shown that the algebra su(N) has 
rank N – 1. Therefore, in su(2) the operator J 2 is the unique Casimir operator and 
su(3) has two such operators. 

In analogy with su(2), all functions of a multiplet are eigenfunctions of every 
Casimir operator. This simultaneous property of the Casimir operators C1, C2, .. ,Cj 
is based on the fact that they are constructed as combinations of quadratic or 
higher expressions of the generators (see below the equation (4.11.2) below). As 
a consequence, a Casimir operator Cj commutes with every partial operator λi of 
another Casimir operator Cj' and therefore with the whole operator i.e. 

   0j jC C ',⎡ ⎤ =⎣ ⎦ , (4.11.1) 

which results – as we know – in simultaneous eigenvalue equations of these 
operators. They yield the eigenvalues 1 2 lC ,C , .. ,C . Practically, these values are 
formulated by l independent parameters 1 2 lp ,p , .. ,p , which characterize the 
multiplets instead of the C's. The integers p and q, which appeared in su(3) at the 
end of section 4.4, are parameters of this kind. In the next section we will see how 
the eigenvalue of C1 is composed of them. 

Casimir operators can be defined in diverse ways. Because the sum of two 
operators of this kind commutes also with the generators it is a Casimir operator 
as well. This holds also for a polynomial of such an operator or for a mixed 
polynomial of several Casimir operators. 

We will show that the quadratic Casimir operator C1 of su(N) has the following 
form 
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   2
1

1

n

i
i

λ
=

= −∑C . (4.11.2) 

The operators 1 i
2 iλ−  constitute the basis of the algebra and n is its dimension. In 

su(2) the expression (4.11.2) reads 

   ( )(2) 2 2 2 2
1
su

x y z= − + + = −C J J J J . (4.11.3) 

Of course, +J  2 can be taken as well. We now prove (4.11.2) and check whether 
C1 commutes with an arbitrary element λk. 

   
[ ] [ ] [ ]( )

( )

2
1

1 1

1 1
2i 0

C , , , ,

.

n n

k i k i i k i k i
i i

n n

ikm i m ikm m i
i m

C C

λ λ λ λ λ λ λ λ λ

λ λ λ λ

= =

= =

⎡ ⎤= − = − + =⎣ ⎦

− + =

∑ ∑

∑ ∑
  (4.11.4) 

In the last term we have replaced and interchanged the indices and made use of 
(2.3.6) like this 

   
1 1 1 1

n n n n

ikm m i m' ki ' i ' m' i ' km' i ' m' ikm i m
i ,m m',i ' m',i ' i ,m

C C C Cλ λ λ λ λ λ λ λ
= = = =

= = − = −∑ ∑ ∑ ∑ . (4.11.5) 

It can be shown that the Casimir operator C2 contains the generators λi in third 
order. However no general constructing procedure is known. Anyhow, in su(3) the 
expression 

   2 1 1
112
6

⎛ ⎞= −⎜ ⎟
⎝ ⎠

C C C  (4.11.6) 

can be given. It can be transformed in another one with the λi's in third order, 
which looks very similar to a transformed expression for C1 (Greiner, Müller, 1994, 
p. 197). 

4.12  The eigenvalue of the Casimir operator C1 in su(3). 
If we change the sign in equation (4.11.2) the essential properties of the Casimir 
operator remain unchanged. This form is also very common and will be used here: 

   
8

2
1

1

1
4 i

i
λ

=

= ∑C     (quadratic Casimir operator). (4.12.1) 

By means of (4.10.3) we write ( ) ( )2 2
1 2

1 1
4 2

λ λ + − − ++ = +T T T T . Analogously, we 

make up ( )2 2
4 5

1
4

λ λ+  and  ( )2 2
6 7

1
4

λ λ+ . Using ( )8 3 3
2
3

λ = +U V , (4.10.3), we 

obtain 
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( )

( )

1

22
3 3 3

1
2
1 44
4 3

.

+ − − + + − − + + − − += + + + + + +

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

C T T T T V V V V U U U U

T V U
 (4.12.2) 

As we have mentioned in section 4.11 all the states of a 
multiplet have the same eigenvalue of the Casimir 
operator. We choose arbitrarily the state M  with the so-
called maximal weight. According to (4.5.2) up to (4.5.4), 

we describe it by 
2 2 T

p q p qM ,+ +
=  

2 2 2 2U V

q q p p, ,= − =  and apply the operator C1 on it. If the 

operators and,+ + −V T U  act on M  they lead out of the 
multiplet and yield zero. In order to make use of this 
property we write according to table 4.2.1 

 

   
3

3

3

2
2
2 ,

+ − − +

+ − − +

− + + −

= +

= +

= −

T T T T T
V V V V V
U U U U U

 (4.12.3) 

which we insert in C1. We obtain 

   ( )22
1 3 3 3 3 3 3

1
3− + − + + −= + + + + − + + +C T T V V U U T V U T V U . (4.12.4) 

If C1 acts on M  the first three expressions on the right hand side do not 
contribute to the result and we get 

   

2 2

1

2 2

1
2 2 2 2 3 2

3

p q p q p q p qM M

p pq q p q M .

⎛ ⎞+ + −⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞+ +

= + +⎜ ⎟
⎝ ⎠

C
 (4.12.5) 

That is, the eigenvalue amounts to 

   
2 2

1 3
p pq qC p q+ +

= + +  (4.12.6) 

up to an arbitrary factor, which depends on the definition of C1. 

As an exercise and as a check, we calculate the Casimir eigenvalue by mean of 
state A  (see figure 4.12.1). According to (4.5.5) up to (4.5.7) we write 

M

A  
U 

V 
T 

Figure 4.12.1. 
States andM A
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   1 1 1 11
2 2 2 2 2 2T U V

p q p q q q p pA , , ,+ − + − + +
= = − + = . (4.12.7) 

By means of (3.3.25/26) we formulate 

   

2 2
2 2 2 2

2 2
2 2 2 2

q q q qA M

q q q qq A q A

+ − +
+ −

= ⋅ − ⋅

+ −
= ⋅ − ⋅ =

U U U
 (4.12.8) 

and obtain  

   

( )22
1 3 3 3 3 3 3

2 2

2 2 2 2

1
3

1 1 2 1 1 1 20 0
2 2 2 2 3 2

1 1
3 3

A A

p q p q p q p qq A

p q pq p pq qq p q q A p q A ,

− + − + + −
⎛ ⎞= + + + + − + + +⎜ ⎟
⎝ ⎠
⎛ ⎞+ − + − + − + − +⎛ ⎞ ⎛ ⎞= + + + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞+ + + +

= + + − + − + = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

C T T V V U U T V U T V U

.  

 (4.12.9) 

which we expect because A  belongs to the same multiplet as M . 

4.13  Direct products of su(3)-multiplets. 
In sections 3.4/4.10 we have dealt with su(2)/su(3) representations affiliated to 
su(2)/su(3)-multiplets. The direct product of irreducible su(2)-representations have 
been investigated in section 3.5. In section 3.6 their transformation in the block 
diagonal form i.e. the decomposition in a direct sum of irreducible representations 
has been performed. By this transformation, the corresponding set of pairs of 
functions has been brought in a direct sum of multiplets of su(2). 

  

This procedure can be applied to su(3)-representations and -multiplets, which 
requires su(3) Clebsch-Gordan coefficients. However, we state without proof that 
the decomposition of the su(3) function set of a direct product of multiplets can be 
performed very similarly to the graphical method for su(2) explained in section 3.7. 

Again we depict the function set of a direct product in such a way that we draw the   
first multiplet M(p,q) according to figure 4.13.1 and set the second multiplet                  
M'(p',q') repeatedly so that its centre appears in every point of M(p,q), which we 
delete afterwards. 

For example the tensor product ( ) ( )3 31 0 1 0M , M' ,⊗  (see section 4.7) is made up 
like this 
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In the second diagram each double occupancy is outlined by a point and a circle. 
The third diagram is decomposed by splitting off first the larger multiplet. 

 In figure 4.13.2 and 4.13.3 two other examples follow: 

 

 

⊗  = 

= ( ) ( )6 32 0 0 1M , M , .⊕  ⊕  = 

Figure 4.13.1. Tensor product of ( )3 1 0M ,  
and ( )3 1 0M ,′ . 

( ) ( )3 31 0 0 1M , M ,⊗ =  ⊗

= ⊕ = ( ) ( )8 11 1 0 0M , M ,⊕  

Figure 4.13.2. ( ) ( )3 31 0 0 1M , M , .⊗  
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Here the diagram for ( ) ( )3 31 0 1 0M , M ,⊗  has been taken from the first example 
(figure 4.13.1). The resulting direct sums in figures 4.13.1 up to 4.13.3 are named 
Clebsch-Gordan series. 

The states of one multiplet of a Clebsch-Gordan series differ in the coordinate Y 
from the states of another multiplet by 0 1 2, , , ..± ±  . Therefore we state that all 
multiplets of a Clebsch-Gordan series have the same triality (see (4.9.8)). 

In table 4.13.1 the decomposition of the tensor products of the smallest multiplets 
is given. 

Table 4.13.1. Direct products of su(3)-multiplets 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 3 6 3

3 3 8 1

8 3 15 6 3

8 8 27 10 10 8 1

6 3 10 8

6 3 15 3

6 8 24 15 6

1 0 1 0 2 0 0 1

1 0 0 1 11 0 0

11 1 0 2 1 0 2 1 0

11 11 2 2 3 0 0 3 2 1 1 0 0

2 0 1 0 3 0 1 1

2 0 0 1 2 1 1 0

2 0 11 3 1 1 2 2 0

M , M , M , M ,

M , M , M , M ,

M , M , M , M , M ,

M , M , M , M , M , M , M ,

M , M , M , M ,

M , M , M , M ,

M , M , M , M , M ,

⊗ ⊕

⊗ ⊕

⊗ ⊕ ⊕

⊗ ⊕ ⊕ ⊕ ⊕

⊗ ⊕

⊗ ⊕

⊗ ⊕ ⊕ ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3

6 6 15 15 6

6 6 27 8 1

1 0

2 0 2 0 4 0 2 1 0 2

2 0 0 2 2 2 1 1 0 0

M ,

M , M , M , M , M ,

M , M , M , M , M ,

⊕

⊗ ⊕ ⊕

⊗ ⊕ ⊕

 

( ) ( ) ( )3 3 31 0 1 0 1 0M , M , M ,⊗ ⊗ =   ⊗    

 ⊕    2  ⊕   = 

 ( ) ( ) ( )10 8 13 0 2 1 1 0 0M , M , M , .= ⊕ ⊕  Figure 4.13.3. 
( ) ( ) ( )3 3 31 0 1 0 1 0M , M , M , .⊗ ⊗
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

15 3 24 15 6

15 3 27 10 8

15 8 42 24 15 15

6 3

15 6 35 27 10 10 8

15 6 42 24 15 6

2 1 1 0 3 1 1 2 2 0

2 1 0 1 2 2 3 0 11

2 1 11 3 2 1 3 4 0 2 2 1

0 2 1 0

2 1 2 0 4 1 2 2 3 0 0 3 11

2 1 0 2 2 3 3 1 1 2 2

M , M , M , M , M ,

M , M , M , M , M ,

M , M , M , M , M , M ,

M , M ,

M , M , M , M , M , M , M ,

M , M , M , M , M , M

⊗ ⊕ ⊕

⊗ ⊕ ⊕

⊗ ⊕ ⊕ ⊕ ⊕

⊕

⊗ ⊕ ⊕ ⊕ ⊕

⊗ ⊕ ⊕ ⊕ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

15 15 60 21 42 24

15 15 6 3

15 15 64 35 35 27 10

10 8 1

0 0 1

2 1 2 1 4 2 5 0 2 3 2 3 1

0 4 2 1 2 2 0 0 1

2 1 1 2 3 3 4 1 1 4 2 2 2 3 0

0 3 2 11 0 0

, M ,

M , M , M , M , M , M ,

M , M , M , M ,

M , M , M , M , M , M , M ,

M , M , M , .

⊕

⊗ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊗ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕

 

The subscript number is the dimension of the multiplet. The product of the 
dimensions of the factor multiplets must equal to the sum of the dimensions of the 
decomposition. 

4.14  Decomposition of direct products of multiplets by 
means of Young diagrams. 
In section 4.6 we acquainted ourselves with the technique of Young diagrams 
determining the dimension of multiplets. We now apply it to direct products of 
multiplets in order to decompose them. Because the graphical method of section 
4.13 gets more and more laborious with growing values of p and q the efficient 
method of Young is welcome. 

We present the procedure of Young without proof and formulate it not only for two 
ordering numbers of p and q but generally for 1 2 1Np ,p , .. ,p −  (the number 1l N= −  
of independent parameters is reviewed in section 4.11). We work with an example 
containing two multiplets as factors, which have, however, only two parameters i.e. 

3N = . We draw the factor multiplets in the standard arrangement (see section 
4.6) like in figure 4.14.1 

 

               (4.14.1) 

 

In the second diagram we marked the boxes with the number of the corresponding 
row. We now add the boxes of the second diagram to the first one in all possible 
ways following these rules: 

(1) No row may be longer than the upper one. 

(2) In a su(N)-multiplet no column may contain more than N boxes. 

(3) Within a row, the numbers in the boxes must not decrease to the right. 

(4) Within a column, the numbers must increase downwards. 

( )2 1M , = ( )and 0 2M , = 1        1

2       2
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In our example we begin with configurations which contain the number 1 in the first 
row like this in  figure 4.14.2. 

 

There are the following additional restrictions: 

(5) In the resulting Young diagrams one goes through all 
boxes from the right to the left and from the top to the 
bottom. At each point of the path the number of boxes 
encountered with the number i must be less or equal 
to the number of boxes with i – 1 (Figure 4.14.3) 

Due to (5), in our example only the diagrams a,b,d,e and o are permitted. 

(6) Columns with N boxes have to be deleted (if the diagram consists only of 
such columns there is the multiplet M(0,0, .. ,0)). 

In accordance with (6) the diagrams b,d,e and o have to be reduced. That is, we 
have the following result 

( ) ( ) ( ) ( ) ( ) ( ) ( )15 6 42 24 15 6 32 1 0 2 2 3 3 1 1 2 2 0 0 1M , M , M , M , M , M , M ,⊗ ⊕ ⊕ ⊕ ⊕  (4.14.1) 

in accordance with table 4.13.1. 

 

 

a 

1       1 

2       2 

b

1      1

2 

2 

c 

1

1       2      2 

d 

1 

1      2 

2 

1

1

2      2

e f 

1      1 2 

2 

... etc ...

2 

1      1       2 

g o 

1      1 

2      2 

.

Figure 4.14.2 
Configurations.

Figure 
4.14.3 
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Another example reads 

            Figure 4.14.4. Direct product ( ) ( )8 811 11M , M , .⊗                           

Of course, the technique of Young applies also to su(2)-multiplets. In connection 
with expression (3.3.20), we have denoted them by [ ]j  or ( )2 1 2jM j+ . The second 
symbol shows that its dimension is 2j + 1 and the number of states minus one is 2j  
(see (4.5.1)). In the following example we will start with the [ ]j -notation, and finally 
we will come back to it as follows 

 Figure 4.14.5. Direct product ( ) ( )4 33 2M M .⊗  

in accordance with (3.7.1). 

( ) ( )8 81 1 1 1M , M ,⊗ = ⊗
1       1

2       

1       1 

2        

⊕  
1       1

2       

⊕ 1        

1       2 
⊕  

⊕  ⊕

        2        

1        

1        1       

2       

1       1       2 

1        = 

( ) ( ) ( ) ( ) ( )27 10 10 8 12 2 3 0 0 3 2 1 1 0 0M , M , M , M , M , .⊕ ⊕ ⊕ ⋅ ⊕

[ ] ( ) ( )4 3
3 1 3 2
2

M M⎡ ⎤ ⊗ ≡ ⊗ =⎢ ⎥⎣ ⎦
 ⊗ 1       1     =  

1       1    ⊕  1     ⊕

1 1       1  

  = 

  ( ) ( ) ( )6 4 2
5 3 15 3 1
2 2 2

M M M ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊕ ⊕ ≡ ⊕ ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  



 85

5  The Lie algebra su(4) 
Analogously to the previous chapter, the basis elements, generators and structure 
constants of ( )4su  are determined and discussed. There are three additional 

subalgebras in ( )4su , the step- and "third" operators of which determine the 
"three dimensional" structure of the multiplet. Their decomposition in "layers" and 
their dimension are dealt with. 

In analogy with the "hypercharge", the so-called "charm" is introduced. Direct 
products of multiplets and their decompositon in Clebsch-Gordan series are 
performed mainly by Young diagrams. 

The operators constituting the Cartan-Weyl basis of  ( )4su  are given. The 
canonical relations, which comprise a set of rules for the commutators of these 
operators, are presented numerically. 

5.1  The generators of the su(4)-algebra, subalgebras. 
The anti-Hermitian 4×4 matrices ie  with vanishing traces constitute the basis of 
su(4). In analogy to sections 2.2 and 4.1 Hermitian 4×4 matrices iλ  or generators 

are split off from ie  this way 1 i
2i ie λ= − . 

Due to (2.1.4/5), the seven λ -matrices from (4.1.1) can be used attaching a 
column of zeros on the right in the matrices and a row of zeros at the bottom. We 
proceed in the same way with the diagonal matrix of (4.1.2) and obtain 

   

λ λ λ

λ λ

λ λ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2 3

4 5

6 7

0 1 0 0 0 i 0 0 1 0 0 0
1 0 0 0 i 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 i 0
0 0 0 0 0 0 0 0
1 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

, , ,

, ,

, λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

8

0 0 1 0 0 0
0 0 i 0 0 1 0 01
0 i 0 0 0 0 2 03
0 0 0 0 0 0 0 0

, .

 (5.1.1) 

According to (2.1.5) we complete the set with 
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9 10

11 12

13 14

0 0 0 1 0 0 0 -i
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 i
0 0 0 0 0 0 0 0
0 1 0 0 0 i 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 i
0 0 1 0 0 0 i 0

, ,

, ,

, .

λ λ

λ λ

λ λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.1.2) 

In order to meet the trace condition (2.3.3) (see (4.1.2)) we choose the remaining 
matrix like this 

   15

1 0 0 0
0 1 0 01
0 0 1 06
0 0 0 3

.λ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟−⎝ ⎠

 (5.1.3) 

The commutator relation (2.3.2) applies 2iikl li k
l

, Cλ λ λ⎡ ⎤ =⎣ ⎦ ∑ . The structure 

constants connecting the generators 1λ  up to 8λ  are identical to the values in 
table 4.1.1. For the residual generators the following structure constants result 

Table 5.1.1. Additional non-vanishing structure constants of su(4). 
 
 i k l Cikl i k l Cikl 
 
 1 9 12 1/2 6 11 14 1/2 
 1 10 11 -1/2 6 12 13 -1/2 
 2 9 11 1/2 7 11 13 1/2 
 2 10 12 1/2 7 12 14 1/2 
 3 9 10 1/2 8 9 10 1 12/  

 3 11 12 -1/2 8 11 12 1 12/  
 4 9 14 1/2  8 13 14 1 3/−  
 4 10 13 -1/2 9 10 15 2 3/  
 5 9 13 1/2 11 12 15 2 3/  
 5 10 14 1/2 13 14 15 2 3/  
 

From tables 4.1.1 and 5.1.1 we take 
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   3 8 3 15 8 15 0, , ,λ λ λ λ λ λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.1.4) 

that is, the generators 3 8 15and,λ λ λ  (and not more) commute mutually. Therefore 
the Lie algebra su(4) has rank 3 (see at the end of section 4.1 or the second 
paragraph of 4.11). Due to the strict correspondence between the generators 

1
λ  

up to 
7

λ  of the algebra ( )3su  and the same generators of ( )4su , ( )3su  is a 

subalgebra of  ( )4su . Generally, the algebras ( )su N′  with N N′ <  are 

subalgebras of ( )su N . 

From now on we deal with the operators λ1, λ2, ... , λ15 constituting an algebra 
which is isomorphic to the matrix representation { }1 2 15, , ... ,λ λ λ . Their 
commutators reveal also the structure constants of table 4.1.1 and 5.1.1. In su(4) 
the T-, U- and V-operators are defined identically to (4.2.4) up to (4.2.6). In 
addition, we define the following operators 

   

( )

( )

( )

9 10 3 3 8 15

11 12 3 3 8 15

13 14 3 8 15

1 1 1 1 2i
2 2 2 32 3

1 1 1 1 2i
2 2 2 32 3

1 1 1 2i
2 2 33

, ,

, ,

,

±

±

±

⎛ ⎞
= ± = + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ± = − + +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= ± = − +⎜ ⎟⎜ ⎟

⎝ ⎠

W W

X X

Z Z

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ

 (5.1.5) 

with the following linear dependencies 

   3 3 3 3 3 3,+ = = −T X W U X Z . (5.1.6) 

By means of the structure constants the following relations can be shown 

  
[ ] [ ]
[ ] [ ]
[ ] [ ]

3 3

3 3

3 3

2

2

2

, , , ,

, , , ,

, , ,

± ± + −

± ± + −

± ± + −

= ± =

= ± =

= ± =

W W W W W W
X X X X X X
Z Z Z Z Z Z

 (5.1.7) 

in analogy to (4.2.5) and (4.2.7). 

As explained in context of eq. (4.2.8), ( )2su -multiplets are affiliated to the T-. U-, 
V-, W-. X- and Z-algebras. The commutators of the T-, U- and V-operators are 
given in table 4.2.1. In table 5.1.2 we put together the commutators of the W-, X- 
and Z-operators with all operators of this kind.  
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Table 5.1.2. Commutator relations of W-, X- and Z-operators with T-, U-, V-, W-, X- 
and Z-operators. The commutator of an operator in the top line with an operator in 
the column at the right hand side results in the operator given in the corresponding 
field. 
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3 3 3

3

3

1 10 0 0 0 0
2 2
1 10 0 0 0 0
2 2

1 1 1 10 0 0 0 0
2 2 2 2

1 10 0 0 0 0
2 2
1 10 0 0 0 0
2 2

1 1 1 10 0 0 0 0
2 2 2 2

1 10 0 0 0 0
2 2
1 10 0 0 0 0
2 2

1 1
2

W+ − + − + −

− + + + +

+ − − − −

+ − + −

− + + + +

+ − − −

+ − + −

− + + + +

+ − − − −

+

− −

− −

− −

− −

− −

− −

− −

− −

−

-

W W X X X Z Z Z

X T W T T

X T W T T

W W X X T

Z U X U U

Z U X U U

X X Z Z U

Z V W V V

Z V W V V

W 3

3

3

3

3

3

1 10 0 0 0 0
2 2 2

1 12 0 0
2 2
1 10 0
2 2

1 1 1 10 0
2 2 2 2

12 0
2
10
2

1 1 0
2 2

2

− + −

+ + + + + +

− − − − − −

+ − + −

+ + + +

− − − −

+ −

+ +

− −

−

− − −

− − −

− −

− −

− −

−

−
−

W Z Z V

W W T W V W W

W T W V W W

X X Z Z W

X X U X X

X U X X

Z Z X

Z Z Z
Z Z
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5.2  Step operators and states in su(4). 
From the tables 4.2.1 and 5.1.2 we observe that the operators 

3 3 3 3 3 3and, , , ,T U V W X Z  mutually commute. Therefore, every function of su(4) 
which is eigenfunction of one of the operators is simultaneously eigenfunction of 
all of them and can be written this way 

   3 3 3 3 3 3T U V W X Z . (5.2.1) 

Table 5.1.2 reveals the relations  

   

[ ]

[ ]

[ ]

3

3

3

1
2
1
2

0

, ,

, ,

, .

± ±

± ±

±

= ±

=

=

W T T

X T T

Z T

∓  (5.2.2) 

In analogy with (4.3.6) up to (4.3.10), we infer 

( )

( )

( )

3 3

3 3

3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3

1 1 11
2 2 2

1 1 11
2 2 2

1 11
2 2

X Z

W Z

W X

T U V W X Z N X ,Z T ,U ,V ,W ,X ' Z ' ,

T U V W X Z N W ,Z T ,U ,V ,W ,X ,Z ,

T U V W X Z N W , X T ,U ,V ,W ,X ,

±
′ ′

±
′′ ′′

±
′′′ ′′′

′ ′ ′= ± ± ±

′′ ′′ ′′ ′′ ′′= ± ±

′′′ ′′′ ′′′ ′′′ ′′′= ± ±

∑

∑

∑

T

T

T

∓

∓ ∓

∓ 3Z ,

 

               (5.2.3) 
where we made use of (4.3.10). We sum up 

   3 3 3 3 3 3 3 3 3 3 3 3
1 1 1 11
2 2 2 2

T U V W X Z T ,U ,V ,W ,X ,Z± → ± ± ±T ∓ ∓ . (5.2.4) 

  

 

 

 

 

 

 

 

 

  

T 

W X 

600 600 

1 

1/2 

1/2 

Figure 5.2.1. T+ -step in the 
T-W-X-plane. 
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The behaviour of the parameters W3 and X3 under the influence of the operator ±T  
is outlined in figure 5.2.1, where the T-, W- and X-line constitute a new plane, 
which is indicated by a big circle. Because Z3 is not changed in (5.2.4), the Z-line 
must be perpendicular to the T-line. Analogously to (5.2.4), one derives 

   
3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 11
2 2 2 2
1 1 1 11
2 2 2 2

T U V W X Z T ,U ,V ,W ,X ,Z ,

T U V W X Z T ,U ,V ,W ,X ,Z .

±

±

→ ± ± ±

→ ± ± ± ±

U

V

∓ ∓

∓
 (5.2.5) 

  

 

 

 

 

 

 

 

 

 

 

 

That is, in order to represent the action of these operators geometrically we need 
an additional UXZ-plane and a VWZ-plane. The mentioned three planes are drawn 
as ellipses in figure 5.2.2. The W-, X- and Z-axes point downward below the 
drawing plane, which is stepped up by the T-, U- and V-line and marked by the 
large circle. For example, the action of the operator T+, which is drawn in the 
figures 4.3.1 and 5.2.1, can also be perceived in figure 5.2.2. 

From (5.2.4) and (5.2.5) we expect that the line pairs (T, Z), (V, X) and (U, W) are 
orthogonal, which is realized in figure 5.2.2. 

Consideration analogous to the derivations of (5.2.4) and (5.2.5) lead to 

   

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 11
2 2 2 2
1 1 1 11
2 2 2 2

1 1 1 1 1
2 2 2 2

T U V W X Z T ,U ,V ,W ,X ,Z ,

T U V W X Z T ,U ,V ,W ,X ,Z ,

T U V W X Z T ,U ,V ,W ,X ,Z .

±

±

±

→ ± ± ± ± ±

→ ± ± ± ±

→ ± ± ±

W

X

Z

∓

∓ ∓

 (5.2.6) 

Z 

T 

V U 

X 

W

Figure 5.2.2. Lines and planes of the 
su(4)-multiplets. 



 92

The relations (5.2.6) can also be observed in figure 5.2.2. 

5.3  Multiplets of su(4). 
Repeated applications of the operators 

and, , , ,± ± ± ± ± ±T U V W X Z generate a lattice 
of states in a tetrahedron like formation in 
analogy to the triangular formation in su(3). 
Figure 5.3.1 displays the tetrahedrons 
formed by two layers of lattice points. The 
arrows point downward to the circles in the 
drawing plane. 

Similar considerations as in section 4.4 
show that a su(4)-multiplet is a finite and 

convex part of this lattice. Symmetry arguments as for su(3) yield that a su(4)-
multiplet ( )1 2 3dM p ,p ,p  is constructed with the help of the following recipe: 

a) The lowest layer (with circles) is a su(3)-
multiplet with ordering numbers p1 and p2 
(instead of p and q). At the end of the second 
line (with p2) climb up p3 units in the direction -Z 
(see the raising arrow in figure 5.3.2). 

b) Starting from the point just reached draw the 
smallest su(3)-multiplet in the "horizontal" plane 
with the same symmetry centre as the multiplet 
in the basal plane. 

c) Add further su(3)-multiplets in higher planes 
in such a way that all lattice points are also 
members of su(3)-multiplets lying in the sloping 
planes TWX, UXZ or VWZ (see figure 5.2.2). 

d) The body of the su(4)-multiplet has to be convex. 

e) Extending the recipe for "short paths" (see at the end of section 4.5) we say that 
if there are n "short paths" starting inward from a vertex the multiplicity is increased 
by n – 1. Symmetric paths are taken as one path and a path leading over a doubly 
occupied boundary point is equivalent to two paths. 

p1 

p2 

p3 upward 

Figure 5.3.2. Main edges 
of the su(4)-multiplet 

( )1 2 3dM p ,p ,p .  

1 

0 

0 

M4(1,0,0) 

0

0

1

M6(0,1,0) 

0 

0 
1

M4(0,0,1) 

Figure 5.3.3. su(4)-multiplets, pi = pk = 0, pl = 1. 

Figure 5.3.1. Two layers of the 
su(4)-lattice. 
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In figure 5.3.3 the smallest su(4)-multiplets are shown. The su(3)-multiplets in 
the basal plane are drawn with dashed lines and circles. In M4(0,0,1) it consists of 
a single state. M4(0,0,1) results from M4(1,0,0) by a 1800 rotation around the T-
line. Generally such a rotation transforms Md (p,q,r) in Md (r,q,p). 

  

 

The representation of M20(0,1,1) can be deduced from M20(1,1,0) by the rotation 
mentioned above. 

 

 

 

 

 

 

 

 

 M20(1,1,0) 

1

1

0 

1

0
 1

M15(1,0,1)

Figure 5.3.4a. su(4)-multiplets, pi = pk = 1, pl = 0. 

M64(1,1,1), lower part,                   M64(1,1,1), upper part 
Figure 5.3.4b. 

1 

1 

1 
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In the outlines of M20(3,0,0) and M60(1,2,0) some state points are blocked out. 

In order to clarify the structure of su(4)-multiplets they are decomposed in 
layers parallel to the basal plane. The layers themselves are split up in su(3)-
multiplets. In figure 5.3.6 for M60(1,2,0) the first layer above the basal plane (C = 1) 
and the second (C = 2)  are given. 

 

In table 5.3.1 the decompositions of several su(4)-multiplets in su(3)-multiplets is 
listed. Superscript numbers mark the numbers (above the basal plane) of the 
layers. 

 

2 

0     0 

M10(2,0,0) 

0

2

0

M20(0,2,0)

0
    0 

3 

M20(3,0,0) 

M60(1,2,0)

    0 

2

1 

Figure 5.3.5. su(4) multiplets, pi > 1,  
pk = 1/0, p3 = 0. 

C = 1: 
( ) ( ) ( ) ( )1 1

15 62 1 0 2M , M ,⊕  
C = 2: 

( ) ( ) ( ) ( )2 2
10 83 0 1 1M , M ,⊕  

Figure 5.3.6. Intermediate layers of the 
multiplet M60(1,2,0). 
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Table 5.3.1. Decomposition of su(4)-multiplets in su(3)-multiplets. 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1
4 3 1

0 1
6 3 3

0 1
4 1 3

0 1 1 2
20 8 6 3 3

0 1 1 2
15 3 8 1 3

0 1 1 1
64 8 15 6 3

2 2 (2)
15 6 3

1 0 0 1 0 0 0

0 1 0 0 1 1 0

0 0 1 0 0 0 1

1 1 0 1 1 2 0 0 1 1 0

1 0 1 1 0 1 1 0 0 0 1

1 1 1 1 1 1 2 2 0 0 1

2 1 0 2 1

M , , M , M , ,

M , , M , M , ,

M , , M , M , ,

M , , M , M , M , M , ,

M , , M , M , M , M , ,

M , , M , M , M , M ,

M , M , M ,

= ⊕

= ⊕

= ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3
8

0 1 2
10 6 3 1

0 1 2
20 6 8 6

0 1 1
60 15 15 6

2 2 3
10 8 6

0 1 2 3
20 10 6 3 1

0 1 1

2 0 0 2 0 1 0 0 0

0 2 0 0 2 1 1 2 0

1 2 0 1 2 2 1 0 2

3 0 1 1 2 0

3 0 0 3 0 2 0 1 0 0 0

M , ,

M , , M , M , M , ,

M , , M , M , M , ,

M , , M , M , M ,

M , M , M , ,

M , , M , M , M , M , .

⊕

= ⊕ ⊕

= ⊕ ⊕

= ⊕ ⊕ ⊕

⊕ ⊕

= ⊕ ⊕ ⊕  
The decompositions of figure 5.3.6 appear in table 5.3.1. 

The formula for the dimension d(p1,p2,p3) of su(4)-multiplets reads (see section 
6.2) 

( ) ( ) ( ) ( ) ( ) ( )

( )
1 2 3 1 2 3 1 1 2 3

1 2 3

1 1 1 1 2 2
12

3

d p ,p p p p p p p p p

p p p .

= + + + + + + + ⋅

+ + +
 (5.3.1) 

The subscript numbers in figures 5.3.3 up to 5.3.5 are in agreement with d in 
(5.3.1). This formula shows that the dimension is independent of an interchange of 
p1 and p3. Because this operation performs only a rotation of the su(4)-multiplet 
(see the remark in connection with figure 5.3.3), this invariance is expected. On 
the other hand interchanges (p1p2) or (p2p3) influence the dimension d. 

The dimension can also be determined by the method of Young tableaux (see at 
the of section 4.6). As an example, we take the multiplet M6(0,1,0). The diagram 
consists of a column of two boxes where the numbers 1 up to 4 have to be filled in, 
following the standard prescriptions. We obtain 

                        
1 1 1 2 2 3
2 3 4 3 4 4

  . (5.3.2) 

The six pairs stand for dimension 6. In the literature multiplets Md(p1,p2,p3) often 
are denoted by [d]. Because it happens that there are several higher multiplets 
with the same dimension d this symbol is ambiguous. We don't use it in this 
publication. 
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5.4  The charm C. 
In section 4.9 we have seen how the T-, U- and V-axes are replaced by the 
orthogonal axes T and Y. The representation of su(4)-multiplets is three-
dimensional and it should be sufficient to give the distance of the lattice points to 
the T-Y-plane instead of the W-, X- and Z-values. This "height" is denoted by C 
and in particle physics it is named charm. 

We claim that the coordinate C is the eigenvalue of the operator  

   ( )15 3 3 3
1 6 1 1
4 4 4 2

.= + = − + +C 1 1 W X Zλ  (5.4.1) 

For the last term in (5.4.1) we have used the definitions (5.1.5). From tables 4.2.1 
and 5.1.2 we take 

   [ ] 3 3 3 3 3 30 with or, , , , , .= =C A A T U V W X Z  (5.4.2) 

Therefore the following eigenvalue relation holds 

   3 3 3 3 3 3 3 3 3 3 3 3T U V W X Z C T U V W X Z .=C  (5.4.3) 

Analogously we find 

   [ ] 0, ± =C T  and deduce (5.4.4) 

   ( ) ( )3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3T U V W X Z T U V W X Z C T U V W X Z .± ± ±= =C T T C T  (5.4.5) 

This means, the C-eigenvalue does not change after a step in the T-direction. The 
same is true for the U- and the V-direction. That is, the C-axis is orthogonal to the 
T-Y-plane (= T-U-V-plane). By means of the tables 4.2.1 and 5.1.2 we find 

   

[ ]

( )
( ) ( )

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3

1 2 and
2

1

T U V W X Z T U V W X Z T U V W X Z

C T U V W X Z .

± ±

± ± ±

±

= ⋅

= =

C,W W

C W W C W

W

∓

∓

∓

 (5.4.6) 

We observe that the C-value of a su(4)-state decreases by 1 if +W  acts on it. The 
same is true for and + +X Z . That is, if we descend from the peak of the multiplet 

( )4 1 0 0M , ,  (see figure 5.3.3) along the edges by a unit step, the height C is also 
reduced by a unit, which is geometrically impossible. We circumvent the problem 
by taking the C-values in units of 2 3/  in analogy to the gauge of the Y-axis. As 
an example, we specify the state points of the multiplet ( )6 0 1 0M , ,  (see figure 
5.3.3) in T-Y-C-coordinates as follows 

   1 1 1 1 2 1 1 1 1 20 0 0 0 1 1 0 1
2 3 2 3 3 2 3 2 3 3

, , , , , , , , , , , , , , , , , .⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.4.7) 
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5.5  Direct products of su(4)-multiplets. 
As in section 4.13 we do not develop the mathematical formalism of the direct 
product of multiplets but we accept the graphical method without proof. 

In analogy to the procedure for su(3)-multiplets, we have to set the second 
multiplet with its reference point (we choose the centre of the basal plane) in every 
point of the first multiplet, which we delete afterwards. Clearly this method 
becomes mostly very confused. Therefore we decompose the su(4)-factor-
multiplets as in table 5.3.1 in su(3)-multiplets with increasing C-values. The direct 
product of both sums yields a sum of direct products of su(3)-multiplets with equal 
or different C-values. To every partial direct product we assign the C-value which 
is the sum of the C-values of both factors. Now we decompose these direct 
products using table 4.13.1 or the corresponding technique and attribute the new 
C-value to the summands. The whole sum of su(3)-multiplets is grouped in su(4) 
multiplets again using table 5.3.1. This technique is completely equivalent to the 
original graphical method. 

Following this line we handle two examples: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

0 1 0 1
4 4 3 1 3 1

0 0 0 1
3 3 3 1

1 0 1 1
1 3 1 1

0 0
6 3

1 1 2
3 3 1

0 1 2
6 3 1

0 1
3 3

10 6

1 0 0 1 0 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0

0 0 1 0 0 0 0 0

2 0 0 1

1 0 1 0 0 0

2 0 1 0 0 0

0 1 1 0

2 0 0 0 1 0

M , , M , , M , M , M , M ,

M , M , M , M ,

M , M , M , M ,

M , M ,

M , M , M ,

M , M , M ,

M , M ,

M , , M , , ,

⎡ ⎤ ⎡ ⎤⊗ = ⊕ ⊗ ⊕ =⎣ ⎦ ⎣ ⎦

⊗ ⊕ ⊗ ⊕

⊗ ⊕ ⊗

⊕ ⊕

⊕ ⊕ =

⊕ ⊕ ⊕

⊕ =

⊕

(5.5.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 0 1
4 4 3 1 1 3

0 0 0 1
3 1 3 3

1 0 1 1
1 1 1 3

0 1 1
3 8 1

1 2
1 3

1
15 1

1 0 0 0 0 1 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1

1 0 11 0 0

0 0 0 1

1 0 1 0 0 0

M , , M , , M , M , M , M ,

M , M , M , M ,

M , M , M , M ,

M , M , M ,

M , M ,

M , , M , , .

⎡ ⎤ ⎡ ⎤⊗ = ⊕ ⊗ ⊕ =⎣ ⎦ ⎣ ⎦

⊗ ⊕ ⊗ ⊕

⊗ ⊕ ⊗

⊕ ⊕ ⊕

⊕ =

⊕

(5.5.2) 

in the same way one derives 

( ) ( ) ( )
( ) ( ) ( )

4 4 4

20 20 4

1 0 0 1 0 0 1 0 0

3 0 0 2 11 0 0 0 1

M , , M , , M , ,

M , , M , , M , , .

⊗ ⊗

⊕ ⋅ ⊕
 (5.5.3) 
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In section 4.14 the decomposition of direct products of multiplets is treated by 
Young diagrams. In figure 5.5.1 we apply it to the case (5.5.2): 

                              Figure 5.5.1. Direct product ( ) ( )0 0 1 1 0 0M , , M , , .⊗   

 

In table 5.5.1 further examples are given. 

Table 5.5.1. Decompositions of direct products of small su(4)-multiplets. 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

4 4 10 6

4 4 15 1

6 4 20 4

10 4 20 20

10 4 36 4

15 4 36 20

1 0 0 1 0 0 2 0 0 0 1 0

1 0 0 0 0 1 1 0 1 0 0 0

0 1 0 1 0 0 1 1 0 0 0 1

2 0 0 1 0 0 3 0 0 11 0

0 0 2 1 0 0 1 0 2 0 0 1

1 0 1 1 0 0 2 0 1 0 1

M , , M , , M , , M , , ,

M , , M , , M , , M , , ,

M , , M , , M , , M , , ,

M , , M , , M , , M , , ,

M , , M , , M , , M , , ,

M , , M , , M , , M ,

⊗ ⊕

⊗ ⊕

⊗ ⊕

⊗ ⊕

⊗ ⊕

⊗ ⊕ ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

4

20 4 35 45

20 4 70 10

20 4 45 20 15

20 4 64 10 6

20 4 60 20

1 1 0 0

3 0 0 1 0 0 4 0 0 2 1 0

0 0 3 1 0 0 1 0 3 0 0 2

1 1 0 1 0 0 2 1 0 0 2 0 1 0 1

0 11 1 0 0 1 11 0 0 2 0 1 0

0 2 0 1 0 0 1 2 0 0 1

, M , , ,

M , , M , , M , , M , , ,

M , , M , , M , , M , , ,

M , , M , , M , , M , , M , , ,

M , , M , , M , , M , , M , , ,

M , , M , , M , , M ,

⊕

⊗ ⊕

⊗ ⊕

⊗ ⊕ ⊕

⊗ ⊕ ⊕

⊗ ⊕ ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
20 15 140 20 60

20 36 4

1

1 1 0 1 0 1 2 1 1 3 0 0 0 2 1

2 1 1 0 1 2 0 0 0 1

, ,

M , , M , , M , , M , , M , ,

M , , M , , M , , .

⊗ ⊕ ⊕ ⊕

⋅ ⊕ ⊕  
 

5.6   The Cartan–Weyl basis of su(4). 
In this section further structural properties of the su(4)-algebra are put together. 
Some relations are given without proof, but a lot of checks using the commutator 
tables are made. Most of the rules discussed hold also for other su(N)-algebras or 
even more generally for semisimple Lie algebras. 

We start with the weight operators T3, Y (see section 4.9) and a variant on C 
(section 5.4), which we denote by H1, H2 and H3: 

( ) ( )0 0 1 1 0 0M , , M , ,⊗ =  ⊗  1 1  ⊕   

 1  
 = ( ) ( )1 0 1 0 0 0M , , M , , .⊕  
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   ( )

3 3 1

8 3 3 2

15 3 3 3 3

1
2
1 2

33
6

2

,

,

.

= =

= = + =

= + + =

T H

Y U V H

W X Z H

λ

λ

λ

 (5.6.1) 

With the help of (4.2.8) and (5.1.6) one finds 

   

3 1

3 1 2

3 1 2

3 1 2 3

3 1 2 3

3 2 3

32
2
32
2
1 22
2 3
1 22
2 3

22
3

,

,

,

,

,

.

=

= − +

= +

= + +

= − + +

= − +

T H

U H H

V H H

W H H H

X H H H

Z H H

 (5.6.2) 

From the commutator tables 4.2.1 and 5.1.2 we take 

   [ ] 0 1 2 3i k, , i ,k , , .= =H H  (5.6.3) 

We rename the step operators like this 

   

( )

( )

( )

( )

( )

( )

1 2 1

4 5 2

6 7 3

9 10 4

11 12 5

13 14 6

1 i
2
1 i
2
1 i
2
1 i
2
1 i
2
1 i
2

T E

V E

U E

W E

X E

Z E

,

,

,

,

,

.

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

± ±

± ±

± ±

± ±

± ±

± ±

= ± =

= ± =

= ± =

= ± =

= ± =

= ± =

 (5.6.4) 

The operators 1 3up toH H  and 1 6up to ± ±E E are named Cartan-Weyl basis of 
su(4).  

Now we look on commutators of H-operators with E-operators and take the 
example 
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[ ] [ ] [ ] [ ]3 5 3 3 3

5 3 5 5 3 5

1 11
2 2

2 with 2

H E W X X X Z X X

E E; ;

, , , ,

.α α

+ + + + +

+ +

⎛ ⎞= + + = + + =⎜ ⎟
⎝ ⎠

≡ =
 (5.6.5) 

All commutators of this type yield similar results as follows 

   [ ] 1 2 3 1 2 6i k ik k, , i , , , k , , ... ., .α= = = ± ± ±H E E  (5.6.6) 

Table 5.6.1 contains the so-called root components αik for positive k. 

Table 5.6.1. Coefficients αik for positive k. 
 
 k α1k α2k α3k 
 
 1 1 0 0 
 2 1/2 1 0 
 3 -1/2 1 0 
 4 1/2 1/3 2 
 5 -1/2 1/3 2 
 6 0 -2/3 2 
 

For negative indices k one obtains 

   αi,- k = - αi k . (5.6.7) 

The vector ( )1 2 3 1 2 6k k k k, , , k , , ... , ,α α α α= = ± ± ±  is named root vector. 

 

Now we investigate commutators of Ek with E-k and choose 

   [ ] [ ]5 5 3 1 2 3
1 22 1
2 3

E E X X X H H, , H− + −= = = − ⋅ + +  (5.6.8) 

where (5.6.2) has been used. We sum up 

   [ ]
3

5 5 5 5;1 5;2 5;3
1

1 2with 1
2 3

E E H; i i
i

, , , .γ γ γ γ−
=

= = − = =∑  (5.6.9) 

Generally one obtains for such commutators 

      [ ]
3

1
k k ki i

i
, .γ−

=

= ∑E E H  (5.6.10) 

Table 5.6.2 presents the values of the coefficients γki for positive k. 
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Table 5.6.2. Coefficients γki 
 
 k γk1 γk2 γk3 
 
 1 2 0 0 
 2 1 3/2 0 
 3 -1 3/2 0 
 4 1 1/2 2/3 
 5 -1 1/2 2/3 
 6 0 -1 2/3  . 
Replacing k by –k interchanges the operators in the commutator (5.6.10), which 
yields 

   γ- k, i = - γki . (5.6.11) 

We define the vector ( )1 2 3k k kk
, , .γ γ γ γ=   

 

Now we investigate the commutator [ ] with 0E ,Ek l k l .+ ≠  The following relation 
is claimed 

   [ ] with 0k l kl m, N k l ,= + ≠E E E  (5.6.12) 

where the indices fulfill the vector condition 

   k l m .α α α+ =  (5.6.13) 

Of course the relation Nlk = - Nkl  (5.6.14) 

holds. Due to (5.6.7) we have i iα α− = −  (5.6.15) 

and with sign reversed indices k,l,m the equation (5.6.13) is satisfied as well. We 
investigate the following examples numerically using table 5.1.2 

   
[ ] [ ]
[ ] [ ]

5 2

5 3 6 5 3

0

i.e. 1 6

E E X V
E E X U Z E ,

, ,

, , , N , m ,
+ +

− + − + −

= =

= = − = − = − =
 (5.6.16) 

and with the help of table 5.6.1 we find 5 3 6
20 2
3

, ,α α α−
⎛ ⎞+ = − =⎜ ⎟
⎝ ⎠

, which satisfies 

(5.6.13). Table 5.6.3 puts together non-vanishing values Nkl and the affiliated 
indices m. 
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Table 5.6.3. Coefficients Nkl for positive k. 
 
 k l m Nkl k l m Nkl 
 
 6 3 5 -1 4 -1 5 -1 
 6 2 4 -1 4 -2 6 -1 
 6 -4 -2 1 3 1 2 -1 
 6 -5 -3 1 3 -2 -1 1 
 5 1 4 -1 2 -1 3 -1 
 5 -3 6 -1 
 5 -4 -1 1 
 

Numerical inspection shows 

   N-k,-l = - Nkl . (5.6.17) 

Making use of (5.6.14), (5.6.17) and table 5.6.3, the remaining non-vanishing 
coefficients Nkl can be found. 

 

The inner product of the root vectors and lk
γ α  , 

   ( )
3

1
l km mlk

m
,γ α γ α

=

= ∑ , (5.6.18) 

contains further laws. Table 5.6.4 presents such products. 

Table 5.6.4. Inner products of and lk
γ α , values for ( )lk

,γ α .  

 
 k,  l = 1 2 3 4 5 6  
 
 1  2 1 -1 1 -1 0 
 2  1 2 1 1 0 -1 
 3  -1 1 2 0 1 -1 
 4  1 1 0 2 1 1 
 5  -1 0 1 1 2 1 
 6  0 -1 -1 1 1 2 
 

We make a spot check and calculate ( )54

1 1 1 2 2 1
2 2 3 3

,γ α = − + ⋅ + ⋅ =  as given in 

table 5.6.4. The table is symmetric with regard to the diagonal. For negative 
indices the relations 

   ( ) ( ) ( ) ( )l l l lk k k k
, , , ,γ α γ α γ α γ α− −− −

= − = − =  hold. (5.6.19) 

The expressions 
( )
( )

2 lk

kk

,

,

γ α

γ α
 (5.6.20) 
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are specially important. The values of this expression are identical with the values  
for ( )lk

,γ α  in table 5.6.4, because the diagonal contains only 2's. We can state 

that the expression (5.6.20) takes only the values 0, 1 2,± ± : 

  
( )
( )

2 0 1 2lk

kk

,
, ,

,

γ α

γ α
= ± ± . (5.6.21) 

Taking into account negative indices on the left-hand side does not change the 
statement. The theory of classical Lie algebras teaches that the expression 
(5.6.20) is at most equal to one of the values 0 1 2 3, , ,± ± ± : 

     
( )
( )

2 0 1 2 3lk

kk

,
, , ,

,

γ α

γ α
= ± ± ± . (5.6.22) 

Our result (5.6.21) is in accordance with this rule. 

 

Another theorem of the group theory states that if andl kα α are root vectors of a 
so-called semisimple Lie algebra the expression 

        
( )
( )

2 lk
l k n

kk

,

,

γ α
α α α

γ α
− ⋅ =  (5.6.23) 

is also a root vector nα . We calculate an example with l = 5, k = 3 making use of 
the tables 5.6.1 and 5.6.4: 

   6
1 1 1 32 1 0 1 0 2 i.e. 6
2 3 2 2

, , , , , , , n .α⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − ⋅ = − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.6.24) 

For l = k we obtain 2 i.e.l k l l , n lα α α α −− ⋅ = − = = − . 

Table 5.6.5 presents the indices n(l,k) defined in (5.6.23) for positive l and k. 

Table 5.6.5. Values n(l,k). 
 
 l, k = 6 5 4 3 2 1 
 
 6  -6 -3 -2 5 4 6 
 5  3 -5 -1 6 5 4 
 4  2 1 -4 4 6 5 
 3  5 -6 3 -3 -1 2 
 2  4 2 -6 1 -2 3 
 1  1 4 -5 2 -3 -1. 
 

Due to (5.6.15) and (5.6.11) we have 
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( )

( )
( )
( )

2 2l lk k

k kk k

, ,

, ,

γ α γ α

γ α γ α
−

−−

= −  and n(l,-k) =  n(l,k). (5.6.25) 

In addition we obtain 

   
( )
( )

( )
( ) ( ) ( )2 2 i.e.l lk k

l k l k
k kk k

, ,
n l ,k n l ,k

, ,

γ α γ α
α α α α

γ α γ α
−

−

⎡ ⎤
⎢ ⎥− ⋅ = − − ⋅ − = −
⎢ ⎥⎣ ⎦

. (5.6.26) 

By means for (5.6.25) and (5.6.26) we can extend table 5.6.5 to negative values 
for l and k. 

 

In the next step we investigate the normalization of the coefficients Nkl (see 
(5.6.14)). In  (5.6.12) instead of the indices k, l and m the notation 

andk l k l,α α α α+  often is used and the relations (5.6.12) and (5.6.13) read 

   
k l k l k l
, Nα α α α α α+⎡ ⎤ =⎣ ⎦E E E . (5.6.27) 

If k lα α+  is not a root, the right hand side of (5.6.27) vanishes. 

We now assume that 
k l

Nα α does not vanish and let follow a similar step 

2k k l k k l k l,, Nα α α α α α α α+ + +⎡ ⎤ =⎣ ⎦E E E , which contains another root, 2 k lα α+ , supposed it 

does not vanish. Because the number of roots is limited, this procedure, which 
generates a root series based on and containingk lα α , must stop once. Let 

integer,kl klk ln , nα α+ ++  be the last non-vanishing root. In the same way the root 
series 

   2 kll l k l k l k, , , ... , nα α α α α α α−− − −  (5.6.28) 

is generated. Group theory states the following relation 

   ( ) ( )1
2k l k k l

kl
kl, k k

nN N n ,α α α α α γ α
+

−
− +⋅ = + . (5.6.29) 

In order to check it with our su(4)-data we look for n+
kl and n-

kl for the pair (k,l) 
referred to in table 5.6.3. For example, we take 5 1 4α α α+ = and 

5 1 5 4
22 0 4
3

, ,α α α α ⎛ ⎞+ = + = ⎜ ⎟
⎝ ⎠

, which is not a root (see table 5.6.1). Therefore we 

have n+
5;1 = 1. Analogously, we obtain 5 1

3 1 2
2 3

, ,α α ⎛ ⎞− + = − −⎜ ⎟
⎝ ⎠

, which is not a root 

as well and we get n-
5;1 = 0. The same n-values appear for all pairs (k,l): 

   1 0kl kln , n+ −= = , (5.6.30) 

which we insert in (5.6.29) using the diagonal values in table 5.6.4: 
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   ( )
1 1 2 1
2kl k ,m k ,lN N−⋅ = ⋅ ⋅ = . (5.6.31) 

The value m(k,l) is associated to k and l according to table 5.6.3.  

We inspect our N-values in table 5.6.3. For instance we take k = 4 and l = -2: 

   ( ) ( ) ( ) ( )4 2 4 2 6 44 4 2 6 1 1 1, , ,,m ,N N N N− − −− − =⋅ = ⋅ − = − − =  in agreement with (5.6.31). For 

all pairs (k,l) the relation (5.6.31) is satisfied. 

The equations (5.6.3), (5.6.6), (5.6.10) (5.6.12) and (5.6.13) are named canonical 
relations. 

The results apply also to su(3) if we drop H3 and 4±E  up to 6±E . If we leave out H2 

, too, and also 2E±  and 3±E , this theory is applied to su(2). The laws of this 
section hold not only for su(N)-algebras but also correspondingly for the so-called 
semisimple Lie algebras and result in a systematic order for them. 
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6  General properties of the su(N)-algebras 
In this chapter above all, properties of the su(N)-algebras (with arbitrary N), which 
have been mentioned in the previous chapters, are put together and completed. 

The generators are formulated generally. The recursion formula for the dimensions 
of ( )su N -multiplets is applied. 

For fundamental multiplets the eigenvalues of the quadratic Casimir operator are 
developed and several direct products of multiplets are dealt with. 

6.1  Elements of the su(N)-algebra. 
The basis elements of the real su(N)-matrix-algebra with vanishing traces are the 

anti-Hermitian matrices 1 i
2i ie λ= − , (2.2.9). The Hermitian N × N – matrices iλ  

(generators) are given partly in (2.1.5). For the remaining diagonal matrices 
usually one does not choose the obvious form (2.1.6) but one takes the set 

( ) ( )

1 1 1
1 0 1 0 1 0

0 2 1
1 10 0 3
3 6 0

0 0 0
0 0 0

1
1 0

1
2 6 1 1

1

0 1
1

, , ,
. .

. . .

... , . . ..
N N

.

N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− +⎝ ⎠

(see (4.1.2) and (5.1.3)). This set of diagonal matrices causes the trace condition 
(2.3.3) to be satisfied for all matrices and i lλ λ . This property produces the total 
antisymmetry of the structure constants Cikl (see (2.3.6)). The set (6.1.1) contains 
N - 1 generators which commute mutually, that is, the Lie algebra su(N) has the 
rank N – 1. Therefore, there are N – 1 Casimir operators (section 4.11). The 
generators (6.1.1) turn into the weight operators 1 2 1N, , ... , −H H H  (see (5.6.1)). In 
order to determine the structure constants of su(N) no closed formulas are known, 
they have to be calculated by means of (2.3.5) performing matrix multiplications. 

The Casimir operators of su(N) are discussed in section 4.11 and an expression 
for the quadratic Casimir operator C1 is given in (4.11.2). 
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6.2  Multiplets of su(N). 
Acting on functions of a multiplet, the N – 1 Casimir operators generate N – 1 
eigenvalues and finally N – 1 parameters 1 2 1Np , p , ... ,p − , which characterize the 
multiplet. They define the structure of the multiplet and lay down its dimension 

( )1 2 1Nd p ,p , ... p − . It can be shown that the general formula for d is insensitive to 
an interchange of p1 and pN-1. We have discussed this property for su(4) in 
connection with (5.3.1). 

There is a recursion formula which relates the dimension ( )1 1 2 2N Nd p ,p ,... ,p− −  of 

a su(N-1)-multiplet with  ( )1 2 1N Nd p ,p ,... ,p −  of a su(N)-multiplet: 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 1 2 1 2 3

1 1 1 1 2 2

1 1 2 3
1 !

1 6 2 1

N N N N N N N N

N N N

d p ,p ,... ,p p p p p p p
N

... p ... p N d p ,p , ... ,p . . .

− − − − − − −

− − −

= + + + + + + ⋅
−

⋅ + + + − ⋅
 

For N = 2 we use d1 = 1 and obtain ( )2 1 1 1d p p= + , (6.2.2) 

 which coincides with 2j + 1 (see (4.5.1)). With 3N =  we get 

    ( ) ( ) ( ) ( )3 1 2 2 2 1 1
1 1 2 1
2

d p ,p p p p p= + + + +  (6.2.3) 

in accordance with (4.6.4). The next analogue step yields 

  
( ) ( ) ( ) ( )

( ) ( ) ( )

4 1 2 3 3 3 2 3 2 1

2 2 1 1

1 1 2 3
6
1 1 2 1
2

d p ,p ,p p p p p p p

p p p p

= + + + + + +

⋅ + + + +
 (6.2.4) 

in accordance with (5.3.1). 

The recursion formalism (6.2.1) is very suitable for computer programs and the 
existing more compact method (Coleman, 1968) nowadays seems not to be 
necessary anymore. 

 

Up to the end of this section we will deal with fundamental multiplets. The 
multiplet M(1,0, ... ,0) (with N – 2 zeros) is named fundamental multiplet for su(N) 
(see section 4.8 and (2.2.13)). The expressions (6.2.2) up to (6.2.4) yield dN = N 
for these multiplets, which is true for all N, because, if we insert 

( )1 1 0 0 1Nd , , ... , N− = −  in (6.2.1) we obtain 

   ( ) ( ) ( ) ( )11 0 0 1 2 2 1
1 !Nd , , ... , ... N N N N

N
= ⋅ ⋅ ⋅ − − =

−
. (6.2.5) 

Due to (2.2.13), the fundamental multiplet 1 2 N, , ... ,ψ ψ ψ  meets 
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   ( )
1

N

j k j llk
l

eψ ψ
−

= ∑e    (6.2.6) 

and with 2ij j= −e λ  and 2ij je λ= −  we obtain 

   λj ( )
1

N

k j llk
l

ψ λ ψ
=

= ∑    (fundamental multiplet). (6.2.7) 

Now, we apply the quadratic Casimir operator C1 on ψk of the fundamental 

multiplet. Due to (4.11.2) and (4.12.1) we write 2
1

1

1
4

n

i
i =

= ∑C λ , where 2 1n N= −  is 

the dimension of the algebra su(N). 

   1 kψ =C
1

1
4

n

i i
i

(
=
∑λ λ )kψ

1

1
4

n

i
i =

= ∑λ ( )
1

N

i llk
l

λ ψ
=
∑  

            ( ) ( ) 2

1 1 1 1 1

1 1
4 4

n N N N n

i i m milk ml
i l m m i mk

λ λ ψ λ ψ
= = = = =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑ ∑ . (6.2.8) 

Next we assert that 2

1

n

i
i

λ
=
∑  is proportional to the unit matrix N1 . For example in 

su(3) we have  

2 2 2 2 2 2 2
1 2 3 4 5 6 7

1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1

, , ,λ λ λ λ λ λ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (6.2.9) 

2
8

1 0 0
1 0 1 0
3

0 0 4
λ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and we obtain 

    2
3

1

1 4
4 3

n

i
i

1λ
=

=∑     (su(3)). (6.2.10) 

Generally, this expression reads 

   
2 21

2

1

1 1
4 2

n N

Ni
i

N 1
N

λ
= −

=

−
=∑  (6.2.11) 

(see Greiner, 1994, p. 376). We insert it in (6.2.8) as follows 

   
2 2

1
1

1 1
2 2

N

k mk m k
m

N N
N N

ψ δ ψ ψ
=

− −
= =∑C   (fundamental multiplet). (6.2.12) 
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We observe that the eigenvalue of the quadratic Casimir operator for a 

fundamental multiplet is 
2 1
2

N
N
−  - of course independent of the properties of the 

individual functions. 

 

Direct products of multiplets with 4N ≥  are intricate. For the decomposition in a 
Clebsch-Gordan series the Young diagram technique is recommended (section 
4.14, 5.5). By means of figure 6.2.1, we investigate the direct product of two 
identical fundamental multiplets 

                          Figure 6.2.1. Direct product ( ) ( )1 0 0 1 0 0M , , , M , , ,⊗   

We determine the dimension of the multiplet M(2,0, ... ,0) and claim 
( ) ( )2 0 0 1 2Nd , , ... , N N /= + , which is true specially for su(3) (use (4.6.4)). For the 

general case we insert ( ) ( )1 2 0 0 1 2Nd , , ... , N N /− = −  in (6.2.1) and obtain 

   ( ) ( ) ( ) ( ) ( ) ( )12 0 0 1 2 2 1 1 2 1 2
1 !Nd , , ... , ... N N N N / N N /

N
= ⋅ ⋅ ⋅ − + ⋅ − = +

−
, (6.2.13)  

QED. 

Analogously one shows   ( ) ( )0 1 0 0 1 2Nd , , , ... , N N /= − . In the relation of figure 
6.2.1 we put in the dimensions as subscripts: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 0 0 1 0 0 2 0 0 0 1 0 0N N N N / N N /M , , ... , M , , ... , M , , ... , M , , , ... , .+ −⊗ ⊕ (6.2.14) 

The dimension check ( ) ( )2 1 2 1 2N N N / N N /= + + −  is satisfied. Analogously for 
a fundamental multiplet and an anti-multiplet the relation 

   ( ) ( ) ( ) ( )2 111 0 0 0 0 1 1 0 0 1 0 0 0N N NM , , ... , M , ... , M , , ... , , M , , ... ,−⊗ ⊕  holds. (6.2.15)  

 

N - 2 N - 2 

⊗ 1 1 ⊕  

1 

( ) ( )2 0 0 0 1 0 0M , , ... , M , , , ... , .= ⊕

N - 2 N - 3

( ) ( )1 0 0 1 0 0M , , ... , M , , ... ,⊗ =  
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